ارزیابی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهواره لندست سنجنده‌های ETM+ و OLI (مطالعه موردی: شهرستان بهبهان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ملایر

2 دانشگاه صنعتی خاتم الانبیاء بهبهان

3 دانشکدة علوم دانشگاه شهید چمران اهواز

4 دانشگاه تربیت مدرس

چکیده

در تحقیق حاضر جهت تهیه نقشه تغییرات کاربری اراضی شهرستان بهبهان از تصاویر ماهواره‌‌ لندست سنجنده‌‌های ETM+سال 1378 و OLI سال 1392 استفاده شد. پس از طبقه‌‌بندی تصاویر، نقشه نهایی کاربری اراضی در شش کلاس مناطق مسکونی، اراضی کشاورزی، آب، جنگل، مرتع و اراضی لخت تهیه شد. سپس تغییرات رخ داده با استفاده از CROSSTAB مشخص شد. نتایج نشان داد افزایش مساحت در کاربری‌‌های کشاورزی و مسکونی و کاهش مساحت در اراضی مرتعی، اراضی لخت و جنگل رخ داده است. کاربری کشاورزی با 01/8036 هکتار بیشترین افزایش مساحت و کاربری مرتع بیشترین کاهش مساحت را داشته است به طوری که 39/4560 هکتار از این اراضی تخریب شده‌‌اند. تخریب مراتع برای تبدیل به کاربری‌‌های دیگر به ترتیب از بیشترین به کمترین شامل: 6233 هکتار از تغییرات مرتع به کشاورزی، 1199 هکتار از تغییرات مرتع به اراضی لخت، 1146 هکتار از تغییرات مرتع به جنگل و 559 هکتار از تغییرات مرتع به مسکونی بوده است. با توجه به کاهش مساحت اراضی مرتعی می‌‌توان این گونه بیان کرد که افزایش جمعیت در روستاها و به تبع آن افزایش تقاضا برای غذا روستاییان را وادار نمود تا بسیاری از اراضی مرتعی را به اراضی کشاورزی تغییر دهند. از طرفی با توجه به افزایش تعداد دام در بازه زمانی مورد بررسی، چرای مفرط دام که سبب تغییر ترکیب پوشش گیاهی می‌‌شود از دیگر دلایل تخریب مرتع است. در نهایت می‌‌توان گفت که تغییرات کاربری‌‌ها دارای پیامدهای ناخوشایندی بر روی محیط‌زیست شهری همچون کاهش پوشش گیاهی و افزایش دمای محیط می‌‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Land Use Change Trends Using Satellite Landsat Satellite Images ETM+ and OLI Sensores (Case Study: Behbahan County)

نویسندگان [English]

  • fatemeh mohammadyari 1
  • Hamidreza Pourkhabbaz 2
  • hossain aghdar 3
  • Mortaza Tavakoly 4
1 malayer university
2 Behbahan Khatam Alanbia University of Technology
3 Faculty of Science, Shahid Chamran University of Ahvaz
4 Tarbiat Modarres University
چکیده [English]

In the present study, Landsat satellite images of sensors ETM + in 2000 and OLI of 2014 were used to prepare the land use change map in Behbahan city. After classification of images, the final land use map was prepared in six classes of residential areas, agricultural lands, water, forest, rangeland and bare lands. Then changes were made using CROSSTAB. The results showed that an increase in area agricultural and residential and reduction of area in pasture land, bare lands and forests occurred.
Agricultural land use had the highest area increase with 8036.01 hectares and rangeland use had the highest area decrease with 4560.39 hectares of these lands destroyed. The degradation of rangelands for conversion to other uses was from the highest to the lowest, including: 6233 hectares of pasture changes to agriculture, 1199 hectares of pasture changes to bare lands, 1146 hectares of pasture changes to forest and 559 hectares of rangeland changes to residential areas. According to the reduced area of rangeland can be paraphrased as the increase in rural population and the subsequent increase in demand for food grain self-sufficiency plan, forcing villagers to many pasture lands into agricultural land change. On the other, the increasing number of livestock in the period under review, which changes the composition of the vegetation, animals Overgrazing is another reason why it is degraded Rangeland.Finally, it can be said that land use changes have unpleasant consequences on urban environment such as reduced vegetation cover and increased environmental temperature.

کلیدواژه‌ها [English]

  • Agriculture
  • Land Evaluation
  • Sattelite images
  • maximum likelihood algorithm
  • Behbahan
Abbas, I. I.; Muazu, K. M. & Ukoje, J. A. 2010. Mapping Land Use-land Cover and Change Detection in Kafur Local Government, Katsina, Nigeria (1995-2008) Using Remote Sensing and GIS. Research Journal of Environmental and Earth Sciences, 2(1): 6-12.
Ahmad, A. 2012. Analysis of Maximum Likelihood Classification on Multispectral Data. Applied Mathematical Sciences, 6(129): 6425 – 6436.
Alavi Panah, K. 2006. Application of remote sensing in geosciences. Tehran University Press, 438 p. (in Persian)
Arekhi, S. & Niyazi, Y. 2009. Comparing evaluation of remote sensing techniques for monitoring land use change, (Case study: Darehshar catchment, Ilam province). Journal - Range and Desert Research of Iran, 17(1), 74-93. (in Persian)
Aranof, S. 2012. Remote sensing and GIS for managers. 710 p.
Asgari, A.; Razani, A.; Rakhshani, P. 2002. Urban land use planning (systems and models). Tehran, Noor Alam Publications, Volume I. (in Persian)
Binh, T.; Vromant, N.; Hung, N.T.; Hens, L. & Boon, E.K. 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environment, Development and Sustainability 7, 519–536.       
Briassoulis, H. 2001. Analysis of Land Use Change. Theoretical and Modeling Approaches, The Web Book of Regional Science, Regional Research Institute, West Virginia University. pp: 112-168
Chen, J.; Gong, P.; He, C, Pu, R. & Shi, P. 2003. Land-use/land-cover change detection using improved change-vector analysis, Photogrammetric engineering and remote sensing, 69: pp: 369-380.
Darvish sefat, A, A. & Shetaii, S. H. 1997. Forest mapping using Landsat TM data by digital methods, Journal of Iran naturar resources, 50, 39-45, University of Tehran. (in Persian)
Fan, F.; Wang, Q. & Wang, Y. 2007. Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on Landsat TM/ETM+ imagery Sensors 7: 1323-1342.
Falahatkar, S.; Sofyanian, A.; Khagedin, J. & Ziaee, R. 2009. A Survey of Isfahan Land Cover Changes in the Past 6 Decades Using Remote Sensing. Agricultural science and technology and natural resources. 13(47): 1-9. (in Persian)
Falahatkar, S.; Hossini, S. M.; Salman Mahini, A. & Ayobi, S. H. 2016. Predict Land Use Changes Using the LCM Model. Environmental Research. 7(13): 163-174. (in Persian)
Fatemi, S. & Rezaee, Y. 2012. The Basics of Remote Sensing, Azade Publication, 288 p. (in Persian)
Fathi Zad, H.; Noheagar, A.; Faramarzi, M. & Tazeh, M. 2013. Survey of Land Use Changes Based on Landscape Metrics Analysis Using Remote Sensing and GIS in Dehloran Arid and Semi-Arid Area. Two Journal of Land Planning. 5(1): 79-99. (in Persian)
Kazemi, M.; Mahdavi, Y.; Nohegar, A. & Rezaee, P. 2011. Estimation of Land Cover and Land Use Changes Using Remote Sensing Techniques and Geographic Information System (Case Study: Tang Bastak Watershed of Shiraz). Journal of the Application of Remote Sensing and GIS in Natural Resources Sciences. 2(1): 101-111. (in Persian)
Gholam Ali fard, M.; Jurabian shoshtary, S.H.; Hosiny kahnoj, S. M. & Mirzaee, M., 2012. Modeling land use changes using LCM coast of the province in GIS environment, Journal of ecological, 38, pp 109-124. (in persian)
Ghorbani, R.; Pur Mohammady, M. & Mhmudzadeh, H. 2013. Environmental approach in modeling land use change Tabriz metropolitan area using satellite images several times, multi-criteria assessment and automated cell Markov chain (1983-2039). Journal of Urban Studies. 32: pp 13-31. (in Persian)
Gomarasca, M.A. 1993. One century of land use changes in the metropolitan area of Milan (Italy). International Journal of Remote Sensing, 14(2): 211-223.
Gong, W.; Yuan, L.; Fan, W. & Stott, P. 2015. Analysis and simulation of land use spatial pattern in Harbinprefecture based on trajectories and cellular automata-Markovmodelling, International Journal of Applied Earth Observation and Geoinformation, 34 : 207-216.
Hadjimitsis, D. G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M. G.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L. & Clayton C.R.I. 2010. Atmospheric correction for satellite remotely, pp 112-121.
Hidarian, P. 2013. Development of urban spatial modeling using GIS technology and spatial weighted regression metropolitan Tehran, Master Thesis, Martyr Chamran University, Faculty of Geosciences, Department of Remote Sensing and GIS. (in Persian).
Huang, C, L. S.; Davis, J. R. G. & Townshend, L. 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23 (4): 725–749.     
Kamusoko, C. & Aniya, M. 2007. Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe, Land Degradation & Development, 18, 221-233.       
Kelarestaghi, A. & Jafarian Jeloudar, Z. 2011. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques, Arabian Journal of Geosciences, 4, 401-411.
Koh, C.N.; Lee, P.F. & Lin, R. S. 2006. Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity. Diversity & Distributions12 (5), 546–554.
Lilsand, T. & Kifar, R. 2001. Digital processing of satellite images, Translated by Hamid Malmirian, Geographical Organization Armed Forces Tehran, pp 216. (in Persian).
Liu, X.H.; Skidmore, A. K. & Oosten, H.V. 2002. Integration of Classification Methods for Improvemen of Land-cover Map Accuracy, ISPRS Journal of Photogrammetry & Remote Sensing, 56: 257-268.
Lu, D. & Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance, International Journal of Remote Sensing, 5: 823-870.      
Lu, D.; Mausel, P.; Brondi´zio, E. & Moran, E. 2004. Change detection techniques, INT, Journal Remote Sensing, 25 (12), 2365–2407.
Morawitz, D.; Blewett, T.; Cohen, A. & Alberti, M. 2006. Using NDVI to assess vegetative land cover. 277-295.
Nahuelhual, L.; Carmona, A.; Lara, A.; Echeverría, C. & González, M. E. 2012. Land-cover Change to Forest Plantations: Proximate Causes and Implications for the Landscape in South-central Chile, Landscape and Urban Planning, 107(1): 12-20.
Onate Valdivieso, F. & Sendra, J. B. 2010. Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling, Journal of Hydrology, 395: 256– 263.
Richards, J. A. 1999. Remote Sensing Digital Image Analysis, Springer- Verlag, Berlin, 240 p.
Samadi, Z. & Ali Mohamadi, A. 2008. Evaluation of a Modified Medal Filter in Correction of Remote Sensing Data Classification. Journal of Humanities. 13: 55-70. (in Persian).
Shalaby, A. & Tateishi, R. 2007. Remote sensing and for mapping and monitoring land cover and land use changes in the Northwestern coastal zone of Egypt. Appl. Geograph. 27: 28-41.
Shaygan, M.; Alimohamadi, A. & Mansorian, A. 2012. Multi-objective Optimization of Land Use Allocation Using NSGA-II Algorithm. Journal of Remote Sensing and GIS Iran. 4(2): 1-18. (in Persian).
Shetaii, S. H. & Abdi, O. 2008. Mapping of land use in mountainous regions of Zagros using ETM+ data, Journal of Agricultural Sciences and Natural Resources, 57, Agricultural Sciences and Natural Resources university of Gorgan, Gorgan. , pp. 129-138. (in Persian)
Tayyebi, A. & Pijanowski, C. 2014. Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of dat mining tools, International Journal of Applied Earth Observation and Geoinformation, 28: 102-116.
Thapa, R. B. & Murayama, Y. 2012. Scenario Based Urban Growth Allocation in Kathmandu Valley, Nepal, Landscape and Urban Planning, 1-2: 140-148. 
Verbesselt, J.; Hyndman, R.; Newnham, G. & Culvenor, D. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1): 106-115.
Wu, Q.; Li, R.S.; Wang, J.; Paulussen, Y.; He, M.; Wang, B. H. & Wang, Z. 2007. Monitoring and predicting land use change in Beijing. Landscape and Urban Plan. 78: 322-333.
Yang, X. & Lo, C. 2002. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area, International Journal of Remote Sensing, 23: 1775-1798.
Zehtabian, G. H. & Tabatabai, M. R. 1999. The Study process of desertification using satellite images and Geographical Information System. Journal Desert, 4(2), pp 57-67.