بررسی رابطه میان تغییرات گستره تالاب و رواناب سطحی حوزه‌ آبریز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده منابع طبیعی، دانشگاه تهران

2 دانشگاه تهران

چکیده

به طورکلی، تجزیه و تحلیل تغییرات وسعت تالاب‌‌ها و بررسی رابطه آن با تغییرات مقادیر رواناب سطحی حوزه‌های آبریز می‌تواند با درک بهتر رابطه میان این متغیرها، نقش مهمی در کارایی و موفقیت برنامه‌های سازگاری با تغییر اقلیم و حفاظت و توسعه تالاب‌‌ها داشته باشد. بنابراین، در این مطالعه اقدام به بررسی تغییرات وسعت تالاب کافتر استان فارس و رابطه آن با تغییرات رواناب‌های سطحی حوزه‌ آبریز تالاب شد. بدین‌‌منظور از تصاویر ماهواره‌ای و داده‌های بارندگی در طول یک دوره 30 ساله (1986-2016) استفاده شد و ضمن تهیه سری زمانی تغییرات وسعت تالاب و مقادیر رواناب سطحی حوزه‌ آبریز آن، رابطه میان این دو متغیر با روش رگرسیون خطی مورد بررسی قرار گرفت. نتایج نشان داد که با کاهش مقادیر بارندگی و افزایش ضریب رواناب و به دنبال آن کاهش مقادیر رواناب‌های سطحی حوزه‌ آبریز، وسعت تالاب به میزان قابل توجهی در دوره زمانی پس از سال 1998 نسبت به دوره پیش از آن کاهش یافته است به نحوی که در پایان دوره 30 ساله وسعت دریاچه به صفر رسیده است. انطباق میان روند تغییرات وسعت تالاب و مقادیر رواناب سطحی حوزه‌ آبریز سبب شد تا مقدار ضریب همبستگی میان این دو متغیر برابر با 91/0 شود. در نهایت می‌توان گفت که نتایج حاصل از این تحقیق با فراهم آوردن اطلاعات دقیق در مورد نحوه پاسخ تالاب‌‌ها نسبت به تغییرات اقلیمی و فعالیت‌های انسانی می‌‌تواند نقش مهمی در کارایی و موفقیت برنامه‌های کاهش اثرات تغییر اقلیم و حفاظت و توسعه تالاب‌‌های ایران داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

An investigation of the Relationship Between Wetland Area and Catchment Runoff Changes

نویسندگان [English]

  • Akram Nouri Kamari 1
  • Afshin Danehkar 1
  • Javad Bazafshan 2
1 university of Tehran,
2 Tehran University
چکیده [English]

In general, analysis of the area changes of wetlands and its relationship with changes in surface runoff of catchments can play an important role in the efficiency and success of adaptation programs with climate change and conservation and development of wetlands. Therefore, in this study, changes in the areas of Kaftar wetland of Fars province and its relationship with the change of runoff in catchment were investigated. To this end, satellite images and rainfall data during a 30 year period (1986-2016) and were used and by providing time series of changes of the areas of wetland and runoff values of catchments, the relationship between these two variables were investigated by linear regression method. The results showed that with decreasing rainfall and increasing runoff coefficient and subsequently reducing the amount of runoff in the catchment, the area of wetland was decreased post-1998 relative to pre-1998 so that at the end of the 30-year period it has reached zero. Correspondence between reduction of wetland area and runoff of catchment caused correlation coefficient between these two variables was equal to 0.91. Finally, it can be said that the results of this research by providing accurate information about wetland responses to climate change and human activities play an important role in the efficiency and success of Climate change mitigation programs and the conservation planning of wetlands in Iran.

کلیدواژه‌ها [English]

  • Wetland
  • runoff
  • Drought
  • satellite images
Abdollahi, K.; Bashir, I.; Verbeiren, B.; Harouna, M. R.; Van Griensven, A.; Huysmans, M. & Batelaan, O. 2017. A distributed monthly water balance model: formulation and application on Black Volta Basin. Environmental Earth Sciences. 76(5): 198-209. (In Persian)

Behrouzirad, B. 2015. Environmental Challenges of Wetlands and Wildlife of Iran and Their Conservation Strategies, First International Conference on Natural Hazards and Environmental Crises of Iran, Strategies and Challenges, Ardabil, Water Resources Research Center of Shahrekord University. (In Persian).

Bwangoy, J. R. B.; Hansen, M. C.; Roy, D. P.; De Grandi, G. & Justice, C. O. 2010. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment. 114(1): 73-86.

Carpenter, S. R.; Stanley, E. H. & Vander Zanden, M. J. 2011. State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annual review of Environment and Resources. 36: 75-99.

Davidson, N. C. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research. 65(10): 934-941.

Dhakal, N.; Fang, X.; Cleveland, T. G.; Thompson, D. B.; Asquith, W. H. & Marzen, L. J. 2011. Estimation of volumetric runoff coefficients for Texas watersheds using land-use and rainfall-runoff data. Journal of Irrigation and Drainage Engineering. 138(1): 43-54.

Eslami-Andargoli, L.; Dale, P. E. R.; Sipe, N. & Chaseling, J. 2010. Local and landscape effects on spatial patterns of mangrove forest during wetter and drier periods: Moreton Bay, Southeast Queensland, Australia. Estuarine, Coastal and Shelf Science. 89(1): 53-61.

Gohari, A.; Mirchi, A. & Madani, K. 2017. System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management. 31(5): 1413-1434. (In Persian)

Guo, H.; Hu, Q. & Jiang, T. 2008. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. Journal of Hydrology. 355(1): 106-122.

Halabian, A. & Shabankari, M. 2011. The Role of Siberian High Pressure in the Distribution of Daily Minimum Temperatures in Iran, Journal of Geography and Environmental Planning, 4: 166-151. (In Persian).

Held, A.; Ticehurst, C.; Lymburner, L. & Williams, N. 2003. High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. International Journal of Remote Sensing. 24(13): 2739-2759.

Hruby, T. 2004. Washington State Wetland Rating System for Western Washington. Washington State Department of Ecology.

Jordán, A. & Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management. 255(3): 913-919.

Kalyanapu, A. J.; Burian, S. J. & McPherson, T. N. 2010. Effect of land use-based surface roughness on hydrologic model output. Journal of Spatial Hydrology. 9(2): 134-147.

Madani, K.; AghaKouchak, A. & Mirchi, A. 2016. Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt. National Iranian Studies. 49(6): 997-1016. (In Persian)

Mafi-Gholami, D.; Mahmoudi, B. & Zenner, E. K. 2017. An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Pe rsian Gulf and Oman Sea. Estuarine, Coastal and Shelf Science. 199, 141-151. (In Persian)

Maltby, E. & Acreman, M. C. 2011. Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrological Sciences Journal. 56(8): 1341-1359.

Mitsch, W. J. & Gosselink, J. G. 2007. Wetlands. Hoboken. ed: John Wiley & Sons, Inc.

Mitsch, W. J.; Bernal, B.; Nahlik, A. M.; Mander, Ü.; Zhang, L.; Anderson, C. J. & Brix, H. 2013. Wetlands, carbon, and climate change. Landscape Ecology. 28(4): 583-597.

Mitsch, W. J.; Zhang, L.; Waletzko, E. & Bernal, B. 2014. Validation of the ecosystem services of created wetlands: two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological engineering. 72: 11-24.

Nguyen, H. H.; McAlpine, C.; Pullar, D.; Johansen, K. & Duke, N. C. 2013. The relationship of spatial–temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean & coastal management. 76: 12-22.

Nichols, D. S. 1983. Capacity of natural wetlands to remove nutrients from wastewater. Journal of Water Pollution Control Federation. 495-505.

Ouyang, W.; Song, K.; Wang, X. & Hao, F. 2014. Non-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamics. Ecological indicators. 45: 579-589.

Parkhurst, R. S.; Winter, T. C.; Rosenberry, D. O. & Sturrock, A. M. 1998. Evaporation from a small prairie wetland in the Cottonwood Lake area, North Dakota-an energy-budget study. Wetlands. 18(2): 272-287.

Perennou, C.; Beltrame, C.; Guelmami, A.; Tomas Vives, P. & Caessteker, P. 2012. Existing areas and past changes of wetland extent in the Mediterranean region: an overview. ecologia mediterranea. 38(2): 53-66.

Pitchford, J. L.; Wu, C.; Lin, L.; Petty, J. T.; Thomas, R.; Veselka, W. E. & Anderson, J. T. 2012. Climate change effects on hydrology and ecology of wetlands in the Mid-Atlantic highlands. Wetlands. 32(1): 21-33.

Rahimi, S.; Tabiee, A. & Julaii, L. 2009. Investigation of species diversity of aquatic birds and the catchment of Kafter wetland in Fars province. Wetland, 1 (2): 70-80. (In Persian).

Rebelo, L. M.; Finlayson, C. M. & Nagabhatla, N. 2009. Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of environmental management. 90(7): 2144-2153.

Rogers, C. E. & McCarty, J. P. 2000. Climate change and ecosystems of the Mid-Atlantic Region. Climate Research. 14(3): 235-244.

Sardashti, M.; Asadi, V. & Omidi, A. 2016. Investigating the importance of wetlands and lakes of country and the Impact of Climate Change on them. Second International Congress of Geosciences and Urban Development, Tabriz, Research Institute of East Azarbaijan Branch. (In Persian).

Saxton, K. E. & Rawls, W. J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil science society of America Journal. 70(5): 1569-1578.

UNEP, 1997. Word Atlas of Desertification. John Wiley and Sons, Inc, and Arnold (second edition), 182p, New York and London.

Wang, Q.; Tenhunen, J.; Dinh, N. Q.; Reichstein, M.; Vesala, T. & Keronen, P. 2004. Similarities in ground-and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment. 93(1): 225-237.

Whiting, G. J. & Chanton, J. P. 1993. Primary production control of methane emission from wetlands. Nature. 364(6440): 794-795.

Withey, P, & van Kooten, G. C. 2011. The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecological Economics. 70(4): 798-805.

Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J. & Dong, R. 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water research. 57: 40-55.

Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of Remote Sensing, 27 (14): 3025-3033.

Zhuang, Q.; Melack, J. M.; Zimov, S.; Walter, K. M.; Butenhoff, C. L. & Khalil, M. A. K. 2009. Global methan emissions from wetlands, rice paddies, and lakes. Eos, Transactions American Geophysical Union. 90(5): 37-38.