پهنه‌بندی پتانسیل خطر ‌بیابان‌‌زایی با استفاده از مدل مطلوبیت چند شاخصه

نوع مقاله: مقاله پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد تاکستان

چکیده

‌بیابان‌‌زایی یکی از بزرگترین چالش‌‌های محیط‌‌‌زیستی زمان ما به شمار می‌‌رود. این پدیده یک مساله جهانی است و پیامدهای جدی آن بر تنوع‌زیستی، ایمنی محیط‌‌‌زیست، ریشه‌‌کنی فقر، ثبات اجتماعی- اقتصادی و توسعه پایدار در سراسر جهان تاثیرگذار است. در این میان مناسب‌‌ترین روش برای تعیین شدت خطر ‌بیابان‌‌زایی استفاده از مدل‌‌های تجربی است. به منظور بررسی شدت ‌بیابان‌‌زایی در این پژوهش از مدل مطلوبیت چند شاخصه (MAUT)(1) استفاده شد. برای این منظور در این روش لایه‌‌های اطلاعاتی مورد نیاز در نرم‌‌افزار Arc View تهیه شد. سپس اقدام به تفکیک واحدهای کاری از روش ژئومرفولوژی شد. با تعیین شاخص‌‌های موثر، ارزش شاخص‌‌ها در هر واحد کاری تعیین و ارزش شاخص‌‌ها نسبت به هم از روش آنتروپی‌‌شانون برآورد و در ادامه، تابع مطلوبیت چند شاخصه یا ضریب مطلوبیت(2) برآورد و در انتها نتایج به صورت نقشه‌‌ ارزیابی ‌ارایه شد. مطالعه‌های انجام شده نشان داد که 43/0 درصد از کل منطقه مطالعاتی به صورت خیلی شدید و 92/8 درصد به صورت ‌به نسبت شدیدی تحت فرایند ‌بیابان‌‌زایی می‌‌باشد و ‌بیابان‌‌زایی با شدت متوسط (74/81%)، بیشترین سهم را در منطقه مطالعاتی به خود اختصاص داده است. در عین حال ارزش عددی ضریب مطلوبیت ‌بیابان‌‌زایی برای کل منطقه از مجموع عوامل 8677/0 (کلاس متوسط یا V) ‌به دست آمد. نتایج این پژوهش امکان برنامه‌‌ریزی را برای به حداقل رساندن ‌بیابان‌‌زایی در اثر انجام طرح‌‌های توسعه فراهم می‌‌سازد و شرایطی را ایجاد کند که با توجه به اولویت‌‌ها و پهنه‌‌بندی آسیب‌‌پذیری منطقه مطالعاتی، تعادل بین طرح‌‌های توسعه و محیط امکان‌پذیر شود.

کلیدواژه‌ها


عنوان مقاله [English]

Desertification Hazard Zoning Using Multi Attribute Utility Theory (MAUT) Model

نویسنده [English]

  • Mohammad Hasan Sadeghi Ravesh
Azad University Takestan
چکیده [English]

Nowadays, Desertification is one of the greatest environmental challenges. It is a global issue & its serious consequences affect on biodiversity, environmental safety, poverty eradication, economic & social stability & sustainable development around the world. Therefore, the most appropriate way to determine the extent of desertification risk is using experimental models. In this study to investigate the desertification multi attribute utility theory model was used. For this aim, required data layers were provided in ArcView environment. Then work units were separated using geomorphology method. By determining the effective index, the index values were determined in each works unit & the value of the indices to one another was determined by Shannon entropy method. In continues with calculating the equation of indices utility in work units, multi-attribute utility function or utility coefficient was estimated. Finally, the results were presented as evaluation map. The results showed that 0.42 & 8.92 percent of total study area are classified in very high & high class of desertification, respectively, & moderate desertification (81.74 percent) has the most share of desertification in the study area. Based on all factors, desertification utility index values for the entire region with value of 0.8677 was classified in moderate class. The results of this research provide the possibility of planning to minimize the effects of desertification in development projects, & can create conditions that the balance between development & environment projects be possible according to the priorities & vulnerability mapping of the study area.
 

کلیدواژه‌ها [English]

  • Desertification Intensity
  • Hierarchical structure
  • Multi Attribute Utility Theory (MAUT)
  • multi criteria decision making (MCDM)
  • Zoning
Ahmadi, H. 2008. Applied Geomorphology, Water Erosion, University of Tehran press, 714 pp. (in persian)

Ahmadi, H. 2009. Applied Geomorphology, Desert and Wind Erosion, University of Tehran press, 570 pp. (in persian)

Ahmadi, H.; Zehtabian, G. H.; Jafari, M.; Azarnivand, H. & Feizniya, S. 2006. Iranian Model of Desertification Potential Assessment, Faculty of Natural Resources, University of Tehran press, 480 pp. (in persian)

Apostolakis, G. E. 2001. Expert Judgment Resolution in Technically-Intensive Policy Disputes. In: Linkov I, Palma-Oliveira J (eds) Assessment and Management of Environmental Risks: Cost Efficient Methods and Applications. Proceedings of the NATO Advanced Research Workshop Boston, MA, USA. Kluwer Academic Publishers, Pp.211-220.

Asgharpour, M. J. 2014. Multi-Criteria Decision Making, 15th edition, Tehran University Press, Tehran, 400 pp. (in persian)

Ayhan, M, B. 2013. A FUZZY and Approach for Supplier Selection Problem: A Case Study In a Gearmotor Company, International Journal of Managing Value and Supply Chains (IJMVSC), 4(3): 11-23.

Azar, A. 1999. Development of Shannon Entropy Method for Data Processing in Content Analysis. Alzahra University Journal of Science, 37-38: 1-18. (in persian)

Azar, A. & Rajabzadeh, A. 2017. Applied Decision Making with an Approach of Multi-Attribute Decision Making (MADM). 7th edition. Tehran, Publication of Negah Danesh. 230 pp. (in persian)

Bednarik, M.; Magulova, B.; Matys, M. & Marschalko, M. 2010. Landslide Susceptibility Assessment of the Kral Ovany–Liptovsky Mikulas Railway Case Study, Physics and Chemistry of the Earth, 35(3-5):162-171.

Darvish Sefat, A. A. 2003. Geographic Information System with Its Application to Natural Resources. University of Tehran Press. Tehran, 250 pp. (in persian)

 Ekhtesasi, M. R. & Ahmadi, H. 1997. The Experimental Method to Estimate the Wind Erosion Sediment, Iranian Journal of Natural Resources. 51: 13-25. (in persian)

Ekhtesasi, M. R. & Mohajeri, S. 1995. Classification of the Type and Severity of Desertification in Iran, Proceeded In 2th National Conference on Desert Areas Issues, Kerman, Iran. (in persian)

[EC] European Commission. 1999. Mediteranean Desertification and Land Use (MEDALUS)) MEDALUS office. London, 88 pp.

[FAO, UNEP] Food and Agriculture Organization and United Nations Environmental Program. 1984. Provisional Methodology for Assessment and Mapping of Desertification. Rome, FAO. 235 pp.

Ghohroudi Tali, M. 2004. Application of Arc View in Geomorphology. Tarbiyat moalem University Press. Tehran, 140 pp. (in persian)

Greco, M.; Mirauda, D.; Squicciarino, G. & Telesca, V. 2005. Desertification Risk Assessment in Southern Mediterranean Area, Journal of Advances in Geosciences, 2: 243-247.

Hiscock, K. M.; Lovett, A. A.; Brainard, J, S. & Parfitt, J. P. 1995. Groundwater Vulnerability Assessment: Two Case Studies Using GIS methodology, Journal of Geological Society, 28: 179–194.

Kabassi, K. & Virvue, M. 2006. Multi- Attribute Utility Therory and Adaptive Techniques for Intelligent Web-Based Educational Software, Instructional Science, 34(2): 313- 158.

Kailiponi, P. 2010. Analysing Evacuation Decision Using Multi- Attribute Utility Therory, International Conference on Evacuation Modeling and Management, Procedia Engineering. 3:163-174.

Kainuma, Y. & Tawara, N. A. 2006. Multiple Attribute Utility Theory (MAUT) Approach to Lean and Green Supply Chain Management, International Journal of Production Economics, 101(1): 99-108.

Keeney, R, L. 1976. A Group Preference Axiomatization with Cardinal Utility, Management Science, 23:140-145.

Keeney, R. L. 1992. Value – Focused Thinking: A Path to Creative Decision- Making, Harvard University press, London, 432 pp.

 Keeney, R. L. & Raiffa, H. 1976. Decisions with Multiple Objectives: Performances and value trade-Offs, Wiley, New York, 569 pp.

Limon, G. A. & Martinez, Y. 2006. Multi Criteria Modeling of Irrigation Water Marked at Basin Level: ASpanish case study, Eropiangeornal of Operational Reserch, 173: 313-336.

Maged, E. G.; Chang, L. M. & Zang, L. 2005. Utility- Function Model for Engineering Performance Assessment, Journal of Construction Engineering and Management, 131(5): 558-565.

Moghadam, M. 2009. Rangelands & Range Management. Tehran University Press, Tehran, 470pp. (in persian)

Mohamedpour, M. & Asgharizadeh, A. 2008. Combination of MAUT and MBSC Models for Evaluation and Rating the Performance of Research Centers of Iranian Telecommunication Research Center. proceeded In 3th National Conference of Performance Management. The Scientific Conference Center of Academic Center for Education, Culture, and Research of University of Tehran. Tehran. Iran. (in persian).

Pahlavanravi, A.; Moghadamnia, A.; Hashemi, Z.; Javadi, M. R. & Miri, A. 2013. Evaluation of Desertification Intensity with Wind Erosion Criterion Using MICD and FAO-UNEP Models in Zahak Region of Sistan, Iranian Journal of Rangeland and Desert Research. 19(4): 624-639. (in persian)

Sadeghi Ravesh, M. H. 2014. Zoning the Potential of Desertification Hazard Using MADM Approach and Shannon Entropy Model in Khezrabad Region, Yazd Province. Iranian Journal of Soil Research, 28(3): 572-588. (in persian)

Sadeghi Ravesh, M. H. 2016. Zoning the Potential of Desertification Hazard Using Principle Component Analysis (PCA) Model in Khezrabad Region, Journal of geographic space, 16(56): 241-261. (in persian)

 Sadeghi Ravesh, M. H.; Ahmadi, H.; Zehtabian, G. R. & Rehayi Khoram, M. 2009. Development of the Numerical Taxonomy Model to Assess Desertification: An Example of Modeling Intensity in Central Iran, Journal of Philipp Agric Scientist, 92(2): 213- 227.

Sadeghi Ravesh, M. H.; Zehtabian, G. h. & Tahmores, M. 2012. Vulnerability Assessment of Environmental Issue to Desertification Risk (Case Study: Khezrabad Region, Yazd). Journal of Watershed Management Research (Pajouhesh & Sazandegi), 96: 75-87. (in persian)

Sepehr, A.; Hassanli, A. M.; Ekhtesasi, M. R. & Jamali, J. B. 2007. Quantitative Assessment of Desertification in South of Iran Using MEDALUS Method, Journal of Environmental Monitoring and Assessment, 134: 243-254.

Shafiei Nik Abadi, M. & Jafarian, A. 2012. Application of the Multi-Attribute Utility Theory (MAUT) to Evaluate the Performance of Electronic Businesses, Management Quarterly. 9(26): 57-68. (in persian)

Shannon, C. E. 1948. A Mathematical Theory of Communication, Bell System Technical Journal, 27 (3): 379–423.

Shojaei, M. R.; Saeb Taheri, N. & Mighani, M. A. 2011. Strategic Planning for a Food Industry Equipment Manufacturing Factory, Using SOWT Analysis, QSPM, & MAUT Models, Asian Journal of Management Research.1(2): 759-771.

Soleimani-damaneh, M. & Zarepisheh, M. 2009. Shannons Entropy Combining the Efficiency Results of Different DEA Models: Method & application, Journal of Expert System with Applications. 36(3): 5146-5150.

Wang, X. D.; Zhong, X. H.; Liu, S. Z.; Wang, Z. Y. & Li, M. H. 2008. Regional Assessment of Environmental Vulnerability in the Tibetan Plateau: Development & Application of a New Method, Journal of Arid Environment. 72(10): 1929-1939.

Yaras, A. & Kursuncu, B. 2015. Optimization of Leaching Parameters of Copper From Malachite Ore Using Multi Attribute Utility Theory. Procceding of the 3th International Symposioum on Innovative Technologies in Engineering & Science (ISITES). Valencia. Spain. Pp.2598-2606.

Zak, J. 2005. The Comparison of Multi-Objective Ranking Methods Applied to Solve the Mass Transit Systems Decision Problems, Proceeding of 16th Mini Euro Conferences & 10th Meeting of the Euro Working Group of Transportation (EWGT). Poznan, Poland. Pp. 926-941.

Zehtabian, G. H.; Khosravi, H. & Masoudi, R. 2014. Models of the Desertification Assessment (Criteria and Indices). University of Tehran Press. Tehran, 258 pp. (in persian)