ویژگی‌های مغناطیسی ذرات ‌معلق انباشته روی برگ چنار برای پایش آلودگی هوا در تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحدعلوم و تحقیقات تهران

2 دکتری زمین شناسی

3 دانشگاه تربیت مدرس

4 دانشگاه تهران

5 سازمان زمین‌شناسی و اکتشافات معدنی کشور

چکیده

پایش خواص مغناطیسی ذرات‌ معلق در هوا که بر روی برگ درختان ترسیب شده‌اند اطلاعات مفیدی از توزیع فضایی ذرات معلق را در مناطق شهری و صنعتی فراهم می‌آورد. مطالعه حاضر با هدف بسط و توسعه به‌کارگیری روش مغناطیس ‌سنجی محیطی برای مطالعه آلودگی‌های محیط‌زیست در ایران و بررسی و پایش آلاینده‌های فلزی هوا ناشی از تردد خوردها در برخی از نقاط پرترافیک تهران انجام گرفت. برگ‌های درختان چنار در مناطق درونی پارک چیتگر به ‌عنوان منطقه پاک و میدان آزادی و پل‌گیشا به‌عنوان منطقه پرتردد جمع‌آوری شد. در هر ناحیه پایه‌های درختی سالم در کم‌ترین فاصله از خیابان به‌صورت تصادفی انتخاب شد. جهت قرارگیری درختان نسبت به خیابان و نور خورشید و جهت وزش باد یکسان در‌ نظر گرفته شد. برگ‌های کاملا سالم از خارجی‏ترین قسمت تاج‌پوشش هر از سمت خیابان، از ارتفاع حداقل 5/1 تا 2 متری از سطح زمین جمع‌آوری شد. برگ‌ها در نایلون‌های لفافه‌دار در مخزن یخ با حداقل تماس دست قرار داده و درکوتاه‌ترین زمان به آزمایشگاه منتقل شد. مولفه‌های مغناطیسی اعم از پسماند‌ مغناطیسی طبیعی، پذیرفتاری ‌مغناطیسی جرمی، پسماند ‌مغناطیسی ایزوترمال و پسماند ‌مغناطیسی القایی اشباع شده در نمونه‌ها اندازه‌گیری شد. غلظت مس، آهن، سرب و کادمیوم با طیف‌ سنج جرمی اندازه‌گیری و رابطه بین مولفه‌های مغناطیسی و فلزات بررسی شد. نتایج نشان داد که بالا‌ترین ارزش پذیرفتاری و پسماند ‌مغناطیسی اشباع برگ با ترافیک بالاتر خودروها در آزادی و گیشا در ارتباط است. بررسی ترکیب ذرات در منطقه چیتگر، ترکیبی از کانی‌های فرومغناطیسی سخت مانند هماتیت با غلظت بالا و کانی‌های فرومغناطیس نرم با غلظت کم را نشان داد که حاصل فعالیت صنایع پیرامونی و ترافیک بزرگراه تهران-کرج است. سهم حضور کانی‌های مغناطیسی نرم در هر دو منطقه آزادی و گیشا در مقایسه با چیتگر بالاتر بود. در آزادی اندازه ذرات بزرگ‌تر بوده و رفتار کانی‌ها نشان‌دهنده ترکیبی از حضور کانی‌های نرم و کانی‌های سخت بود، در حالی‌که اندازه ذرات در گیشا کوچک‌تر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Magnetic Properties of Air Polluting Suspended Particles Deposited on the Leaves of Platanus Orientalis to Monitor Air Pollution in Tehran

نویسندگان [English]

  • Sara Abbasi 1
  • habib Ali Mohammadian 2
  • Seyed Mohsen Hosseini 3
  • Nematollah Khorasani 4
  • Abdolreza Karbassi 4
  • Aslani Atekeh 5
1 Science and Research Branch of Tehran Islamic Azad University
2 PhD. Geology, Geology Survey of Iran, Tehran
3 Tarbiat Modares University
4 University of Tehran
5 Geology. Geological Survey of Iran, Tehran
چکیده [English]

Monitoring the magnetic properties of suspended particles in the air deposited on the leaves of trees provides useful information on the spatial distribution of the suspended particles in urban and industrial areas. This study was carried out to extend and develop the application of peripheral magnometry method to investigate environmental pollution and metal contaminants resulted from vehicle traffic in some areas of Tehran with heavy traffic. The leaves of Platanus Orientalis in the inland areas of Chitgar Park as a clean area and Azadi Square and Geisha Bridge as crowded areas were collected. Magnetic components such as natural magnetic residual, mass magnetic susceptibility, isothermal magnetic residual and saturated induction magnetic residual were measured in the samples. The concentration of copper, iron, lead and cadmium was measured by mass spectrometry and the relationship between magnetic components and metals was investigated. The results showed that the highest value of susceptibility and magnetic residual of leaf saturation was associated with heavier traffic of vehicles in Azadi and Geisha. The study of the composition of particles in the Chitgar showed a combination of hard ferromagnetic minerals such as hematite with high concentration and soft ferromagnetic minerals with low concentration, which are the result of the activities of the peripheral industries and traffic in Tehran-Karaj highway. The presence of soft magnetic minerals in both Azadi and Geisha regions was higher than Chitgar. In Azadi, the size of particles was larger and the mineral behavior indicated a combination of the presence of soft and hard minerals, while the size of particle was smaller in Geisha.

کلیدواژه‌ها [English]

  • Heavy metal
  • Magnetic properties
  • leaves of Platanus Orientalis
  • Environmental Magnetism
  • Magnetic Susceptibility
  • Saturation Isothermal Remanent magnetization
Addo, M. A.; Darko, E. O.; Gordon, C.; Nyarko, B. J. B. & Gbada go, J. K. 2012. Heavy Metal Concentrations in Road Deposited Dust at Ketu-South District, Ghana. International Journal of Science and Technology, 2 (1): 28-39
Adachi, K. & Tainosho, Y. 2004. Characterization of heavy metal particles embedded in tire dust. Environ Int, Oct, 30(8):1009-17.
Basavaiah, N. & Khadkikar, A.S. 2004. Environmental mangenetism and it is application towards paleomonsoon reconstruction. J. Ind, Geophys. Union. 8(1): 1-14
Bucko, M.; Magiera, S.; Johanson, T.; Petrovský, B.; Eduard, P. & Lauri J. 2011. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environmental Pollution 159: 1266-1276.
Chaparro, Marcos A. E.; Juan M. Lavornia., Mauro A. E; Chaparro, & Sinito. M. 2014. Biomonitors of urban air pollution: Magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environmental Pollution, 172: 61-69.
Dearing, J.; Dann, R.; Hay, K.; Lees, J.; Loveland, P.; Maher, B. & O’Grady, K. 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124: 228–240
Duong, T. & Kyu Li. K. 2010. Determining contamination level of heavy metals in road dust from busy traffc areas with different characteristics. Revised 9 August 2010. Accepted 6 September 2010.
Ellis, J. B. & Revitt. D. M. 1982. Incidence of Heavy Metals in Street Surface Sediments: Solubility and Grain Size Studies. Water, Air and Soil Pollution, 17: 87-100.
Evans, M. & Heller, F. 2003. Environmental Magnetism.  Principles and application. Academic Press. 297
Flanders, P. 1994. Collection, measurement and analysis of airborne magnetic particulates from pollution in the environment. Journal of Applied Physics 75: 5931–5936.
Gautam, P.; Blahab, U. & Appel, E. 2005. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmospheric Environment, 39:2201–2211
Gubbins, D. & Herrero–Bervera, E. 2007. Encyclopedia of Geomagnetism and Paleomagnetism. http ://www.springer.com.
Hakanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res, 14, 5, 97-101
Hanesch, M.; Scholger, R. & Rey, D. 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmospheric Environment, 37:5125–5133
Hansard, R. Maher, B. A. & Kinnersley, R. 2011. Biomagnetic monitoring of industry-derived particulate pollution. Environmental Pollution. 159:1673-1681
Hofman, J.;  Maher, B. A.; Muxworthy, A. M.; Wuyts, K.; Castanheiro, A. & Samson, R. 2017. Biomagnetic monitoring of atmospheric pollution: a review of magnetic signatures from biological sensors.   Environmental Science and Technology 51(12):  6648-6664.
Jiries, A.; Hussein, H. H. & Halaseh, Z. 2001.The quality of water and sediments of street run-off in Amman, Jordan. Hydrol Process, 15: 815-824
Kardel, F.;Wuyts, K.; Maher, B.A.; Hansard, R. & Samson. R. 2011. Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Inter-species differences and inseason variation. Atmospheric Environment, 45:5164-5171
Kardel, F.; Wuyts, K.; Maher, B. A. & Samson, R. 2012. Intra-urban spatial variation of magnetic particles: Monitoring via leaf saturation isothermal remanent magnetization (SIRM). Atmospheric Environment, 55:111-120
Kardel, F.; Wuyts. K.; Khavaninzhadeh.A.R. & Wuytack. T. 2012. Comparison of leaf saturation isothermal remanent magnetisation(SIRM)with anatomical, morphological and physiological tree leaf characteristics for assessing urban habitat quality. Environmental Pollution. 1- 8
Kermani, M.; Arfaeinia, H.; Nabizadeh, R.; Alimohammadi, M. & Aalamolhoda, A. A. 2016. Levels of PM2.5 associated heavy matals in the ambient air of Sina hospital district, Tehran, Iran. Journal of Air pollution and Health 1:1-6
Kim, W.; Doha, S-J.; Parkb, Y-H. & Yun, S-T. 2007. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmospheric Environment 41:7627–7641.
Lehndorff, E.; Urbat, M.; Schwark, L. 2006. Accumulation histories of magnetic particles on pine needles as function of air quality. Atmospheric Environment.40: 7082 – 7096
Leili, M.; Naddafi K.; Nabizadeh R.; Yunesian. M. & Mesdaghinia A. 2008. The study of TSP and PM10 concentration and their heavy metal content in central area of Tehran, Iran. Air Qual Atmos Health.1: 159–66
Magtoto, L.; M.Deemson G.; Fideliz. M. & Lomahan. P. 2013. Morpho-Anatomical characterization of Tithonia diversifolia(Hemsl)gray growing sites exposed to vehicular emissions.International Journal of Plant, Animal and Environmental Sciences. 3(3)
Maher, B.; Moore. A. & Matzka, J. 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmospheric Environment 42:364–373
Maher, B.; Mitchel, R. & Kinnersley, R. 2010. High-resolution magnetic biomonitoring: a quantitative surrogate for particulate pollution. CLIMAQS Workshop ‘Local Air Quality and its Interactions with Vegetation’ January 21-22, 2010, Antwerp, Belgium
Matzaka, J. & Maher B. A. 1999.  Magnetic biomonitoring of roadside tree leaves: Identification of spatial and temporal variations in vehicle-derived particulates. Atmospheric Environment, 33: 4565 -4569.
McIntosh, G.; Gómez-Paccard, M. & Luisa Osete, M. 2007. The magnetic properties of particles deposited on platanus x hispanica leaves in Madrid, Spain, and their temporal and spatial variations. Science of the Total Environment,382:135–146.
Mejia- Echeverry, D.; Chaparro, M.A.E. & Duque-Trujillo, J. F. 2018. Castañeda Miranda, A. G. Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia sp. Atmosphere,9(283):1-19
Mitchell, R. & Maher, B. A. 2009. Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution. Atmospheric Environment, 43(13): 2095–2103
Mitchell, R.; Maher, B. A.  & Kinnersley, R. 2010. Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species magnetic analyses. Environmental Pollution158:1472–1478
Mollashahi, M.; Alimohammadian, Habib.; Hosseini, S.M.; Riahi, A.R.; Feizi,V. & Satateiyan, A. 2012. Mapping Air Pollution Using Magnetometery on Tree Leaves in Tehran Metropolitan, Iran. 44(3): 93-108(in persian)
Moreno, E.; Leonardo, S.; Dinar es-Turell, J.; Winkler, A. & Cascella, A. 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment37: 2967–2977
Naddafi, K.; MH, Sowlat. M.H. & Safari, M.H. 2012. Integrated Assessment of Air Pollution in Tehran, Over the Period from September 2008 to September 2009. Iranian J Publ Health, 41(2): 77-86
Robertson, D.; Taylor, J. & Hoon. S. R. 2003. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Applied Geochemistry, 18: 269-282.
Sagnotti, L.; Macrí, P.; Egli, R. & Mondolio, M. 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium(Italy): towards a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. Journal of Geophysical Research, 111, B12S22
Shahar, H. & Amran, M. 2008. Comparison of Pt, Rh, Cu, Zn, Pb and Ni Concentration in road dust samples of Genting Sempah Tunnel, Pahang. The Malaysian Journal of Analytical Sciences, 12(2):291–301
Simonich, S. & Hites, R.1995. Organic pollutant accumulation in vegetation. Environmental Science and Technology, 29: 2905 - 2914.
Sowlat, M.H.; Gharibi, H.; Yunesian. M.; Tayefeh Mahmoudi, M. & Lotfi, S .2011. A novel, fuzzy-based air quality index(FAQI)for air quality assessment. Atmos Environ, 45: 2050-2059.
Thomson, R. & Oldfield, F. 1986. Environmental Magnetism. Allen and Unwin: Springer, London
Wang, G.; Oldfield, F.; Xia, D.; Chen, Fahu. & Liu X .2012. Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China. Atmospheric Environment, 46:  289-298.
Wang, J.; Li, S.; Li , H.; Qian, X.; Li, X.; Liu, X.; Lu, H.; Wang, C. & Sun, Y. 2017. Trace metals and magnetic particles in PM2.5: Magnetic identification and its implications. Science Reports. 29; 7(1):9865
Wei, B. & Yang, L. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94: 99-107.
Zhang, C.; Huang, B.; Li, Z. & Liu, H. 2006. Magnetic properties of high road-side pine tree leaves in Beijing and their environmental significance. Chinese Science Bulletin, 51: 3041-3052.
Zhang, C.; Qiao, Q.; Piper, J. D. & Huang, B. 2011. Assessment of heavy metal pollution from a Fesmelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution. http://dx.doi.org/10. 1016/j.
Zhu, Y.; Hinds, W.C.; Kim, S. & Sioutas, C. 2002. Concentration and size distribution of ultrafine particles near a major highway. Journal of the Air and Waste Management Association, 52:1032–1042.