ارزیابی همبستگی پوشش گیاهی با دمای سطح زمین با استفاده از تصاویر ماهواره‌ای (مطالعه موردی: استان اردبیل)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری آب و هواشناسی کشاورزی دانشگاه حکیم سبزواری، ایران

2 دانشیار اقلیم شناسی دانشگاه حکیم سبزواری، ایران

3 دانشیار سنجش از دور دانشگاه تبریز، ایران

4 استادیار اقلیم شناسی دانشگاه حکیم سبزواری، ایران

چکیده

دمای سطح زمین از شاخص‌های اصلی تعادل انرژی کره‌ی زمین و تاثیرگذار در حیات انسان‌هاست. زیرا، تمامی فعالیت‌های بشری، مستقیم و غیرمستقیم، به دمای هوا که متاثر از دمای سطح زمین است ارتباط دارد. بنابراین، بدین منظور در این پژوهش با استفاده از تصاویر ماهواره لندست مربوط به تاریخ 19/05/1394 به ارزیابی ارتباط پوشش گیاهی با دمای سطح زمین در نیمه شمالی استان اردبیل پرداخته شد. برای این کار از شاخص‌های پوشش گیاهی (NDVI، SAVI و LAI) و شاخص LST با روش Mono Window در نرم‌افزار ENVI4.8 استفاده شد. نتایج نشان داد که بین شاخص‌های پوشش گیاهی و دمای سطح زمین ارتباط مستقیم وجود دارد و در مناطق شهری و بایر بیشترین LST مشهود است که با گسترش شهرنشینی و افزایش بیابان‌زایی در طول سال‌های متمادی بر میزان آن نیز افزوده خواهد شد. بنابراین مناطق شمالی و جنوب شرقی منطقه موردمطالعه (شامل دشت مغان و جنگل‌های فندق لو) که از نظر پوشش گیاهی غنی می‌باشند دارای LST کمتر (مقدار LST در این بخش حدود 290 تا 300 درجه کلوین است) و مناطق مرکزی منطقه مورد مطالعه که از نظر پوشش گیاهی فقیر بوده و شامل اراضی بایر است دارای LST بیشتری (مقدار LST در این بخش بین 312 تا 324 درجه کلوین است) است. نتایج این پژوهش در مطالعات حفاظت محیط‌زیست و منابع طبیعی بسیار کاربردی بوده و می‌تواند راهگشای برنامه‌ریزی‌های حفاظت محیط‌‌زیستی قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Vegetation Correlation With Surface Temperature Using Satellite Imagery (Case Study: Ardabil Province)

نویسندگان [English]

  • Mahdi Asadi 1
  • Mohammad Baaghideh 2
  • Khalil Valizade kamran 3
  • Hamed Adab 4
1 PhD in Agro-climatology, Hakim Sabzevari University, Iran
2 Assoc. Profe. of Climatology, Hakim Sabzevari University, Iran
3 Assoc. Profe. of Remote Sensing, University of Tabriz, Iran
4 Assist. Profe. of Climatology, Hakim Sabzevari University, Iran
چکیده [English]

Surface temperature is one of the main indices of Earth's energy balance and has an impact on human life because all human activities, direct and indirect, are related to the temperature of the air, which is affected by the temperature of the earth's surface. Therefore, in this study, using Landsat satellite images dating from 19/05/1394, the relationship between vegetation and surface temperature in the northern part of Ardebil province was studied. To this purpose, vegetation indices (NDVI, SAVI, and LAI) and LST index using the Mono Window method were used in ENVI 4.8 software. The results showed that there is a direct correlation between vegetation indices and surface temperature, and in urban areas and Wasteland, the highest LST is evident, with the expansion of urbanization and the increase of desertification over the years, it will be added. Therefore, the northern and southeastern regions of the study area (including Moghan plain and Fandoghlo forests), which are rich in vegetation, have LST less (LST values in this region are around 290 to 300 Kelvin), and the central regions of the study area Which is poor in terms of vegetation and includes Wasteland with a higher LST (LST in this area is between 312 and 324 degrees Kelvin). The results of this study are very useful in environmental and natural resource conservation studies and could be the basis for environmental protection planning.
 

کلیدواژه‌ها [English]

  • Remote Sensing
  • Vegetation
  • surface temperature
  • Landsat
  • Ardabil Province
Akbari, E.; Ebrahimi, M.; Fiezizadeh, B. & Nezhadsoleimani, H. 2016. Evaluating Land Surface Temperature related to the Land use Change Detection by Satellite Image (Case study: Taleghan Basin). Geography and Environmental Planning, 26(4): 151-170 (In Persian).
Alavi Panah, K. 2009. Thermal Remote Sensing and Its Application in Earth Sciences, University of Tehran, Second Edition, 524 pages (In Persian).
Allen, R. G.; Bastiaanssen, W. G. M.; Tasumi, M.; Trezza, R. & Waters, R. 2002. Surface Energy Balance Algorithms for Land (SEBAL); Advanced Training and User's Manual.
Anderson, M. C.; Kustas, W. P.; Norman, J. M.; Hain, C. R.; Mecikalski, J. R. & Schultz, L. 2011. Mapping daily evapotranspiration at fi eld to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences, 15(1): 223–239.
Bastiaanssen, W. G. M.; Menenti, M.; Feddes, R. A. & Holtslag, A. A. M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1.Formulation. Journal of Hydrology, 198–212.
Carlson, T. 2007. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8): 1612–1629.
Carnahan, W. H. & Larson, R. C. 1990. An analysis of an urban heat sink. Remote Sensing of Environment, 33: 65-71.
Dashtakian, K. & Dehghani, M. A. 2006. Survey of land surface temperature in relation to vegetation and urban development using remote sensing and geographic information systems in desert areas, Case study: Yazd-Ashkzar region. Research and construction in natural resources. 4 (20): 169-179 (In Persian).
Ebrahimi Heravi, B.; Rengzen, k.; Riahi Bakhtiari, H. & Taghizadeh, A. 2016. Determining the most suitable method for extracting the surface temperature using Landsat 8 satellite images in Karaj metropolis. Iranian Journal of Remote Sensing & GIS, 8(3): 59-76 (In Persian).
Feizizadeh, B.; Didehban, K. & Gholamnia, K. 2016. Extraction of Land Surface Temperature (LST) based on Landsat Satellite Images and Split Window Algorithm Study area: Mahabad Catchment. Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(98): 171-181 (In Persian).
Ghorbannia, V.; Mirsanjari, M.; Liaghati, H. & Armin, M. 2017. Estimating land surface temperature of land use and land cover in Dena County using single window algorithm and landsat 8 satellite data. Environmental Sciences, 15(2): 55-74 (In Persian).
Gillies, R. R.; Carlson, T. N.; Cui, J.; Kustas, W. P. & Humes, K. S. 1997. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. International Journal of Remote Sensing, 18(15): 3145–3166.
Harlan, S. L.; Brazel, A. J.; Prashad, L.; Stefanov, W. L. & Larsen, L. 2006. Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine, 63(11): 2847–2863.
Hatefi Ardekani, M. & Rezaei Moghaddam, M. H. 2016. Application of Satellite Images and GIS in the Feasibility of the Use of Solar Energy for Providing Lighting Systems (Case Study: Zanjan - Tabriz Highway). Arid Regions Geographic Studies, 6 (21):105-124 (In Persian).
Hong, S.; Lakshmi, V. & Small, E. E. 2007. Relationship between vegetation biophysical properties and surface temperature using multisensor satellite data. Journal of climate, 20(22): 5593-5606.
Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3): 295-309.
Jahanbakhsh, S.; Zahedi, M. & Valizadeh Kamran, K. 2012. Land Surface Temperature Calculation Using SEBAL and Decision Tree Methods Based on ETM + Image in RS, GIS Environment in the Maragheh Central Region. Geography and Planning, 16(38): 19-42 (In Persian).
Jiang, J. & Tian, G. 2010. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia environmental sciences, 2: 571-575.
Jin, M. L.; Dickinson, R. E. & Zhang, D. L. 2005. The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate, 18(10): 1551–1565.
Lafortezza, R; Carrus, G; Sanesi, G. & Davies, C. 2009. Bene fi ts and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry & Urban Greening, 8(2): 97–108.
Larson, R. C. & Carnahan, W. H. 1997. The influence of surface characteristics on urban radiant temperatures. Geocarto International, 12: 5-16.
Liu, H. & Weng, Q. 2009. An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago. Environmental Monitoring and Assessment, 159(1–4): 143–161.
Molnár, G. 2016. Analysis of land surface temperature and NDVI distribution for Budapest using Landsat 7 ETM+ data. Acta Climatologica ET Chorologica, 49: 49-61.
Moran, M. S. 2004. Thermal infrared measurement as an indicator of plant ecosystem health. Thermal Remote Sensing in Land Surface Processes, 257–282.
Nduati, E. W.; Mundia, C. N. & Ngigi, M. M. 2013. Effects of Vegetation Change and Land Use/Land Cover Change on Land Surface Temperature in the Mara Ecosystem, International Journal of Science and Research (IJSR), India Online, 2(8): 22- 28.
Rajeshwari, A. & Mani, N. D. 2014. Estimation of Land Surface Temperature of Dindigul District using Landsat 8 Data, IJRET: International Journal of Research in Engineering and Technology, 5(3): 122-126.
Rasooli, A. 2008. Fundamentals of Applied Remote Sensing with Emphasis on Satellite Image Processing, Tabriz University Press, First Edition, 806 pages (In Persian).
Reisen, W.; Lothrop, H.; Chiles, R.; Madon, M.; Cossen, C. & Woods, L. 2004. West Nile virus in California. Emerging Infectious Diseases, 10(8): 1369–1378.
Ruiz, M. O.; Chaves, L. F.; Hamer, G. L.; Sun, T.; Brown, W. M. & Walker, E. D. 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites & Vectors, 3(19).
Sun, Y. J.; Wang, J. F.; Zhang, R. H.; Gillies, R. R.; Xue, Y. & Bo, Y. C. 2005. Air temperature retrieved from remote sensing data based on thermodynamics. Theoretical and Applied Climatology, (80)1: 37-48.
Tavosi, T. & Delara, G. 2010. Climate Classification of Ardebil Province. Nivar, 34(71-70): 47-52 (In Persian).
Teillet, P. M.; Staenz, K. & Willams, D. J. 1997. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sensing of Environment, 61: 139–149.
Thenkabail, P. S.; Gamage, M. S. D. N. & Samakhtin, V. U. 2002. Evaluation of narrowband and broadband vegetation indices for determining optimal hyper spectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68: 607–621.
Trenberth, K. E. 1992. Climate system modeling. Cambridge, UK: Cambridge University Press.
Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8: 127–150.
Valizadeh Kamran, Kh.; Rahimpour, T. & Nakhostin Rohi, m. 2016. Estimation of surface temperature using Sabal algorithm and Landsat 8 satellite images (Case study: Urmia). First International Congress on Earth, Space and Clean Energy. Ardabil. Mohaghegh Ardabili University. https://www.civilica.com/Paper-ATTITTDE01-ATTITTDE01_439.html (In Persian).
Weng, Q. 2009. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4): 335–344.
Weng, Q.; Lu, D. & Schubring, J. 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote sensing of environment, 89: 467-483.