بررسی کارایی جاذب آلی پوست برنج، در جذب آلودگی‌‌های نفتی از آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه محیط‌زیست، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

2 دانشجوی دکتری، گروه محیط‌زیست، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

3 کارشناسی، گروه محیط‌زیست، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

آلودگی آب با ترکیبات نفتی یکی از مهمترین معضلات محیط‌زیستی در کشور‌های نفت‌خیز محسوب می‌شود. زیرا، می‌تواند تاثیرات نامطلوبی بر سلامت انسان و محیط‌‌زیست بر جای بگذارد. استفاده از روش‌های بهینه و کارآمد برای تصفیه پساب‌های حاوی مواد نفتی کاملا ضروری می‌باشد. روش‌های مختلفی برای پاکسازی آلودگی‌های نفتی و مشتقات آن وجود دارد. در این پژوهش، از جاذب پوست برنج به عنوان جاذب آلی برای حذف آلودگی نفتی از پساب استفاده شد. در ابتدا با استفاده از آنالیز طیف‌سنجی تبدیل فوریه مادون قرمز (1) ترکیب شیمیایی پوست برنج تعیین، سپس آزمایشات جذب به صورت ناپیوسته با استفاده از محلول‌های آزمایشگاهی حاوی نفت انجام گرفت و شرایط بهینه جذب با تغییر فاکتور‌های موثر بر جذب که شامل pH، غلظت اولیه آلوده‌کننده، زمان تماس و مقدار جاذب بر میزان جذب در سطوح مختلف بود، مورد بررسی قرار گرفت و میزان جذب نفت به روش وزنی تعیین شد. در نهایت استفاده از جاذب برای پساب آزمایشگاهی مورد مطالعه قرارگرفت. بیشترین کارایی جاذب، برای جذب نفت با استفاده از جاذب پوست برنج در زمان 15 دقیقه مشاهده شد که اختلاف معنی‌داری با دیگر زمان‌های تماس داشت (میزان 77/79 درصد جذب؛ 05/0P<) و کمترین مقدار آن با اختلاف معنی‌داری در 3 دقیقه دیده شد (میزان 93/65 درصد جذب). بیشترین میزان جذب پوست برنج در 5=pH و 3=pH مشاهده شد که این دو pH با یکدیگر اختلاف معنی‌داری نداشتند اما با دیگر pH‌ها اختلاف معنی‌داری داشت (میزان 57/76 و 34/75 درصد جذب- 05/0P<) و کمترین درصد جذب در 9=pH دیده شد که اختلاف معنی‌داری با سایر pH‌ها نداشت (میزان 93/58 درصد جذب- 05/0P<). تاثیر مقادیر جاذب پوست برنج در 5/1 گرم در لیتر با اختلاف معنی‌داری بیشتر از دیگر مقدار جاذب‌ها بود (میزان 11/84 درصد جذب؛ 05/0P<) و کمترین درصد جذب با اختلاف معنی‌داری نسبت به سایر مقادیر در 25/۰ گرم در لیتر مشاهده شد (میزان 58/62 درصد- 05/0˂P). برازش هم‌دما‌های جذب سطحی نشان داد که جذب نفت توسط پوست برنج با مدل فروندویچ مطابقت داشت (98/0=R2). از این رو می‌توان نتیجه گرفت که جاذب پوست برنج کارایی بالای در جذب نفت از پساب دارد و می‌تواند در تصفیه فاضلاب‌های صنعتی مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Efficiency of Rice Organic Absorbents for Absorption Oil Pollutants from Water

نویسندگان [English]

  • Mohammad Hadi Abolhasani 1
  • Niloofar Pirestani 2
  • Fahimeh Tahamsebi 3
1 Assist. Profe. Department of Environment, Faculty of Agriculture and Natural Resources, Islamic Azad University, Isfahan Branch (Khorasgan), Isfahan, Iran
2 PhD Students, Department of Environment , Faculty of Agriculture and Natural Resources, Islamic Azad University, Isfahan Branch (Khorasgan), Isfahan, Iran
3 BSc, Department of Environment, Faculty of Agriculture and Natural Resources, Islamic Azad University, Isfahan Branch (Khorasgan), Isfahan, Iran
چکیده [English]

Water pollution with oil compounds is one of the most important environmental issues in oil-rich countries, as it can have adverse effects on human health and the environment. It is absolutely essential to use optimized and efficient methods for treatment of oil-containing wastes. There are several strategies to remove oil pollution and its derivatives. In this research, rice's peel adsorbent was used as an organic adsorbent to remove oil pollution from wastewater. Initially, the chemical composition of rice peel was determined with using FT-IR analysis, then adsorption tests were conducted discontinuously using laboratory solutions containing oil to determine optimum adsorption conditions by adjustment of effective factors such as pH, initial concentration, exposure time, and adsorbent amount, and the amount of oil adsorption was determined using weight method. Ultimately, the use of adsorbent for laboratory wastewater was studied. The highest adsorbent efficiency was observed for absorbing oil during 15 minutes, which had a significant difference with other contact time (79.77% absorption, P <0.05) and the lowest value by difference significance was observed in 3 minutes (65.93% absorption). The highest amount of adsorption by rice peeling was observed at pH = 5 and pH = 3, which did not show significant differences with other pHs (76.57% and 75.34%, respectively, P < 0.05) and the lowest adsorption was observed at pH = 9, which had no significant difference with other pH (58.93%, P <0.05). The effect of rice peel absorbent values in 1.5 g/l was significantly higher than other amount of adsorbents (84.1% absorption, P <0.05) and the lowest percentage of adsorption was significantly different from other values in 0.25 g / liter was observed (62.58%; 05.05 P). Isotherm fitting of surface adsorption showed that oil adsorption by rice peel follows the Freudlich model (R2 = 0.98). Therefore, it can be concluded that rice peel adsorbent has a high efficiency in adsorbing oil from wastewater and can be used in the treatment of industrial wastewater.

کلیدواژه‌ها [English]

  • Bottom Waste
  • Effective Factors on Absorption
  • Oil Pollution
  • Rice peel
Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O. & Kokot, S. 2003. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. of Porous Materials. 10:159-170.
Ahmad, A. L.; Sumathi, S. & Hameed, B. H. 2005. Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: Equilibrium and kinetic studies, Water Research. 39:2483–2494.
Aklil, A.; Mouflihb, M. & Sebti, S. 2004. Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent, Journal of Hazardous Materials. 112(3): 183–190.
Anbia, M. & Moradi, S. E. 2009. Adsorption of naphthalenederived compounds from water by chemically oxidized nanoporous carbon", Chemical Engineering Journal. 148(2-3): 452-458.
Annunciado, T. R.; Sydenstricker, T. H. D. & Amico, S. C. 2005. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin. 50:1340-1346.
Balarak, D.; Mahdavi, Y. & Mostafapour, FK. 2016. Application of alumina-coated carbon nanotubes in removal of tetracycline from aqueous solution. Journal of Pharmaceutical Research International. 8:1-10.
Balla, W.; Essadki, A.; Gourich, B.; Dassaa, A.; Chenik, H. & Azzi, M. 2010. Electrocoagulation/ electroflotation of reactive, disperse and mixture dyes in an externalloop airlift reactor. Journal of hazardous materials. 184(1): 710-6.
Banat, F. A.; Al-Bashir, B.; Al-Asheh, S. & Hayalneh, O. 2000. Adsorption of phenol by bentonite. Environ Pollut. 107: 391-398.
Bande, R. M.; Prasad, B.; Mishra, I. & Wasewar, K. L. 2008. Oil field effluent water treatment for safe disposal by electroflotation. Chemical Engineering Journal. 137(3): 503-509.
Bícego, M. C.; Taniguchi, S.; Yogui, G. T.; Montone, R. C.; Da Silva, D. A. M.; Lourenco, R. A.; De Castro Martins, C.; Sasaki, S. T.; Pellizari, V. H. & Webe, R. R. 2006. Assessment of contamination by polychlorinated biphenyls and aliphatic and aromatic hydrocarbons in sediments of the Santos and Sao Vicente Estuary System, S ao Paulo, Brazil. J. of Marine Pollution Bulletin. 52(12): 1804-1816.
Chavan, A. & Mukherji, S. 2008. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: E_ect of N: P ratio", Journal of Hazardous Materials. 154(1-3): 63-72.
Chen, L.; Si, Y.; Zhu, H.; Jiang, T. & Guo, Z. A. 2016. Study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/ water mixtures and nano-emulsions. Journal of Membrane Science. 520:760-800.
Chowdhury, A. K.; Sarkar, A. D. & Bandyopadhyay, A. 2009. Rice Husk Ash as a Low Cost Adsorbent for the Removal of Methylene Blue and Congo Red in Aqueous Phases، Clean–Soil، Air، Water. 37(7): 581-591.
El-Naas, M. H.; Al-Zuhair, S. & Abu Alhaija, M. 2010. Removal of phenol from petroleum re_nery wastewater through adsorption on date-pit activated carbon", Journal of Hazardous Materials. 162(3): 997-1005.
Foo, K. & Hameed, B. 2009. Utilization of Rice Husk Ash as Novel Adsorbent: A Judicious Recycling of the Colloidal Agricultural Waste، Adv. Colloid Interface Sci. 152(1-2): 39-47.
Fox, C.; OHara, P.; Bertazzon, S.; Morgan, K.; Underwood, F. & Paquet, P. 2016. A preliminary spatial assessment of risk: Marine birds and chronic oil pollution on Canada’s Pacific coast. Science of the Total Environment. 573:799-809.
Genieva, S.; Turmanova, SC.; Dimitrova, A. & Vlaev, L. 2008. Characterization of Rice Husks and the Products of Its Thermal Degradation in Air or Nitrogen Atmosphere, J. Therm. Anal. Calorim. 93(2): 387-396.
Haussard, M.; Gaballah, I.; Kanari، N.; De Donato, P.; Barres, O. & Villieras, F. 2003. Separation of Hydrocarbons and Lipid from Water Using Treated Bark, Water Res. 37(2): 362-374.
Husseien, M.; Amer, A.; El-Maghraby, A. & Taha, N. 2009. Availability of Barley Straw Application on Oil Spill Clean up, Int. J. Environ. Sci. Technol. 6(1): 123-130.
Ibrahim, S.; Wang, S. & Ang, H. M. 2010. Removal of Emulsified Oil from Oily Wastewater Using Agricultural Waste Barley Straw، Biochem. Eng. J. 49(1): 78-83.
Isil Gurten, I.; Ozmak, M.; Yagmur، E. & Aktas, Z. 2012. Preparation and characterization of activated carbon from waste tea using K2CO3", Biomass and Bioenergy. 37:73-81.
Kuyukina, M. S.; Ivshina, I. R.; Serebrennikova, M. K.; Krivorutchko, A. B.; Podorozhko, E. A.; Ivanov, R. V. & Lozinsky, V. I. 2009. Petroleum-contaminated water treatment in a uidized-bed bioreactor with immobilized Rhodococcus cells", Int. Biodeterioration Biodegrad. 63(4): 427-432.
Lee, M. & Jung, J. Y. 2015. Pollution risk assessment of oil spill accidents in Garorim Bay of Korea. Marine Pollution Bulletin. 100(1): 297-303.
Liew, K.; Yee, A. & Nordin, M. 1993. Adsorption of Carotene from Palm Oil by Acid-Treated Rice Hull Ash، J. Am. Oil Chem. Soc. 70(5): 539-541.
Lim, T. T. & Huang, X. 2007. Evaluation of Kapok (Ceiba pentandra (L. Gaertn.) as a Natural Hollow Hydrophobic-Oleophilic Fibrous Sorbent for Oil Spill Cleanup، Chemosphere. 66(5): 955-963.
Noor Syuhadah, S. & Rohasliney, H. 2012. Rice Husk as Biosorbent: A Review. Health Environ. J. 3(1): 89-95.
Ong, ST.; Lee, CK. & Zainal, Z. 2007. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour Technol. 15:2792-9.
Proctor, A.; Clark, P. & Parker, C. 1995. Rice hull ash adsorbent performance under commercial soy oil bleaching conditions, Journal of the American Oil Chemists' Society. 72(4): 459-462.
Purnomo, C. W.; Salim, C. & Hinode, H. E. 2012. ect of the activation method on the properties and adsorption behavior of bagasse y ash-based activated carbon", Fuel Processing Technology. 102:132-139.
Rahmani, A. R.; Askari, G. H.; Barjeste Asgari, F.; Hedayati, K. & Alijani, F. 2010. Investigation of phenol removal from aqueous solutions using copper modified pumice، Scientific Journal of Hamadan University of Medical Sciences and Health Services. 17:50-56 (In Persian).
Razavi, Z. S. & Mirghfary, N. 2013. Application of crude rice husk in the removal of crude oil from aquatic environments. Iranian Journal of Chemistry and Chemical Engineering. 35(1): 13-23 (In Persian).
Razavi, Z S.; Mirghfari, N. & Rezaei, B. 2012. Application of rice husk in the removal of engine oil from aquatic environments, the sixth national conference and the first international conference on waste management, Mashhad, the Organization of Municipalities (In Persian).
Roop, Ch. B. & Goyal, M. 2005. Activated Carbon Adsorption, CRC Press. Vol. 497.520 Pages.
Salahi, A.; Noshadi, I.; Badrnezhad, R.; Kanjilal, B. & Mohammadi, T. 2013. Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology", Journal of Environmental Chemical Engineering. 1(3): 218-225.
Tir, M. & Moulai-Mostefa, N. 2008. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. Journal of hazardous materials. 158(1): 107-15.
Varghese, S. & Vinod, V. P. 2004. Kinetic and equilibrium charactrerization of phenols adsorpton onto a novel activated carbom in water treatment. Indian J Chem Technol. 11:825-833.