برآورد تغییرات دمای سطح زمین با استفاده از تصاویر ماهواره لندست و الگوریتم‌‌های تک‌پنجره، تک‌کانال و پلانک (مطالعه موردی: دشت بجنورد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقلیم شناسی دانشکده جغرافیا و علوم محیطی دانشگاه حکیم سبزواری، ایران

2 استادیار اقلیم شناسی، گروه اقلیم شناسی، دانشکده جغرافیا و علوم محیطی دانشگاه حکیم سبزواری، ایران

3 استادیار اقلیم شناسی گروه اقلیم شناسی، دانشکده جغرافیا و علوم محیطی دانشگاه حکیم سبزواری، ایران

4 استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی دانشگاه حکیم سبزواری، ایران

چکیده

دمای سطح زمین (LST) به عنوان یک متغیر مهم در مطالعه میکرو اقلیم و انتقال تابش در جو در نظر گرفته می‌شود، که عوامل محیطی موثر بر الگوهای پوشش زمین را با استفاده از متغیر دما نشان می‌دهد. در این مطالعه، از تصاویر باند حرارتی ماهواره‌‌های لندست 5 و لندست 8 برای برآورد دمای سطح دشت بجنورد استفاده شده است. در ابتدا، فرآیندهای تصحیح هندسی و اتمسفری، محاسبه شاخص پوشش گیاهی، شاخص انتشار سطح زمین، بخار آب موجود در هوا و دمای جو بر اساس کلوین انجام شده است. سپس، با استفاده از نرم‌افزار QGIS، برآورد دمای سطح زمین با استفاده از الگوریتم پلانک، الگوریتم تک پنجره و الگوریتم تک کانال به دست آمده است. نتایج نشان می‌‌دهد که مناطق دارای پوشش گیاهی کمترین دما و بیشترین مقدار دما در مناطق بدون پوشش گیاهی و زمین های بایر ثبت شده است. مقایسه دمای نزدیکترین یاخته با دمای ایستگاه سینوپتیک بجنورد و ایستگاه تبخیر سنجی اسدلی و ایستگاه گریوان نشان می‌‌دهد که دمای به دست آمده از طریق مدل‌های مورد استفاده بالاتر از دمای اندازه‌‌گیری شده در ایستگاه‌‌ها است و مقایسه نقشه‌‌ها نشان می‌‌دهد که بیشترین دمای دوره گرم در زمین‌های بایر حومه بجنورد ثبت شده است. همچنین، بر اساس میانگین خطای مربع (RMSE)، (MAD) و (NS) در میان الگوریتم‌های مورد مطالعه، دمای به دست آمده از الگوریتم تک کانال اختلاف کمتری نسبت به دمای ایستگاه‌‌های موجود نشان می‌‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating Land surface Temperature Changes Using Landsat Satellite Imagery and Three Algorithms, Mono Window, Single Channel and Planck, Case Study of Bojnourd Plain

نویسندگان [English]

  • Ahmad Hoseinzadeh 1
  • Abdolreza Kashki 2
  • Mokhtar Karami 3
  • reza Javidi Sabaghian 4
1 PhD Student of Climatology Hakim Sabzevari University, Iran
2 Assist. Profe. of Climatology Hakim Sabzevari University, Iran
3 Assist. Profe. of Climatology Hakim Sabzevari University, Iran
4 Assist. Profe. of Civil Engineering Hakim Sabzevari University, Iran
چکیده [English]

Land surface temperature (LST) is considered as an important variable in the study of microclimate and radiation transmission in the atmosphere, which shows the environmental factors affecting land cover patterns using the temperature variable. In this study, thermal band images of Landsat 5 and Landsat 8 satellites have been used to estimate the surface temperature of Bojnourd plain. Initially, the processes of geometric and atmospheric correction, calculation of vegetation index, land emission index, water vapor in the air and atmospheric temperature were performed based on Kelvin. Then, using QGIS software, ground surface temperature estimation is obtained using Planck algorithm, single window algorithm and single channel algorithm. The results show that the areas with vegetation have the lowest temperature and the highest amount of temperature in areas without vegetation and barren lands. Comparison of the temperature of the nearest cell with the temperature of Bojnourd synoptic station and Asadli evaporating station and Grivan station shows that the temperature obtained through the models used is higher than the temperature measured in the stations and shows a comparison of the maps. The highest temperature of the warm period has been recorded in the barren lands of Bojnourd suburbs. Also, based on the mean square error (RMSE), (MAD) and (NS) among the studied algorithms, the temperature obtained from the single channel algorithm shows less difference than the temperature of the existing stations.

کلیدواژه‌ها [English]

  • Land surface Temperature
  • Bojnourd Plain
  • Planck function
  • Mono Window Algorithm
  • Single Channel Algorithm
Abdul Athick, M.; Shankar, K. & Raja Naqvi, H. 2019. Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window. split window algorithm and spectral radiance model. Data in brief 27 (2019) 1047732.
Adli Atiq, R. 2018. Evaluation of three LST extraction methods using thermal remote sensing data. Master Thesis. kharazmi University.(In Persian).
Akbari, E.; Ebrahimi, M.; Fiezizadeh, B. & Nezhadsoleimani, H. 2015. Evaluating Land Surface Temperature related to the Land use Change Detection by Satellite Image (Case study: Taleghan Basin).Journal of Geography and Environmental Planning. Volume: 26. 151 – 170 (In Persian).
Arvin, A. 2019. Land Surface Temperature Detection Using of Satellite Images. Journal of Natural Environmental Hazards. Volume 8, Issue 19. 91-102 (In Persian).
Darka, B. 2017. Investigating the performance of three methods of determining the land level for urban areas. Master Thesis. kharazmi University. (In Persian).
Darvishi, SH.; Rashidpour, M. & Soleimani, K. 2019. Analysis of Land Use Role in the Formation of Thermal Islets of Marivan County Using Landsat Satellite Images. Geography and Development Iranian Journal. Volume 17. Issue 54. 143-162 (In Persian).
Duana, Si-Bo.; Zhao-Liang, Lia.; Chenguang, Wangc.; Shuting, Zhanga.; Bo-Hui, Tang.; Pei, Lenga. & Mao-Fang Gaoa. 2018. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. International Journal of Remote Sensing.2018.
Ebrahimi Heravi, B.; Rangzan,K.; Riahi Bakhtiari H. R. & Taghi Zadeh A.2016.Introducing the Most Appropriate Method to Extract Land Surface Temperature Using Landsat 8 Satellite Images in Karaj Metropolitan.Iranian Journal of Remote Sencing & GIS, Volume:8 Issue: 3. 59 - 76 (In Persian).
Ebrahimi, A. & Kiani Salmi, E. 2019. Assessing the impact of urban expansion and land cover changes on land surface temperature in Shahrekord city. Journal of Rs and Gis for natural Resources, Volume: 9 Issue: 4. 102 - 118 (In Persian).
Entezari, A.; Amir Ahmadi, A.; Aliabadi, K.; Khosravian, M. & Ebrahimi, M. 2016. Monitoring Land Surface Temperature and Evaluating Change Detection Land Use (Case Study: Parishan Lake Basin). Journal of Hydrogeomorphology. Volume: 8. 113-139 (In Persian).
Fallah Ghalhari, G.A.; Yousefi, H.; Hosseinzadeh, A.; Alimardani, M. & Reyhani, E. 2019. Assessment of Climate Change in Bojnourd Station in 2016-2050 using Downscaling Models LARS WG and SDSM. ECOHYDROLOGY. Volume 6, Issue 1. 99-109 (In Persian).
Jamali, Z.; Ownegh, M. & Salman Mahini, A. R. 2019. Investigation the relationship between surface temperature and land use and Normalized Difference Vegetation Index in Gorgan plain. The Journal of Spatial Planning. 23.175-194 (In Persian).
Jouybari,Y.; Akhoondzadeh, M. & Saradjian, M. R. 2015 .A Split- Window Algorithm for Estimating LST from Landsat-8 Satellite Images. Journal of Geomatics Science and Technology. Volume 5 (1). 215-226 (In Persian).
Kalanki. M. & karandish, F.2015. Predicting the Long-term Effect of Climate Change on Climatic Variables in Humid Region. Journal of Irrigation and Water Engineering Volume 5, Issue 4. 131-149 (In Persian).
Lemus-Canovas, M.; Javier Martin-Vide, M.; Carmen Moreno-Garcia Joan, A. & Lopez-Bustins.2020. Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. Science of the Total Environment.2020.
Mijani, N.; Hamzeh, S. & Karimi Firozjaei, M. 2019. Quantifying the effect of surface parameters and climatic conditions on land surface temperature using reflective and thermal remote sensing data. RS & GIS for Natural Resources. Vol 10. Issue 1. (In Persian).
Mirzapour, S. 2016. Assessment of ground surface temperature from Landsat 8 TIRS sensor data using separate window algorithm and luminosity temperature correction (Case study in Tabriz). Master Thesis of Urmia University. (In Persian).Navare, A. 2015. An Analysis on International Society Practice Toward the Climate Change. Journal Environmental Researches. Volume 5, Issue 9. 47-58. (In Persian).
Ndossi, M. & Avdan.U. 2016. Application of Open Source Coding Technologies in the Production of Land Surface Temperature (LST) Maps from Landsat: A PyQGIS Plugin. Remote Sensing. 2016. 8. 413
North Khorasan Meteorological Department. 2018. (In Persian).
Nurwanda, A. & Honjo, T. 2020. The prediction of city expansion and land surface temperature in Bogor City. Indonesia. Sustainable Cities and Society.Volume 52. January 2020.
Rongali, G.; Ashok Kumar, K.; Ashvani Kumar, G. & Rakesh, K. 2018. A Mono-Window Algorithm for Land Surface Temperature Estimation from Landsat 8 Thermal Infrared Sensor Data: A Case Study of the Beas River Basin. India. Pertanika J. Sci. & Technol. 26 (2): 829 – 840.
Salmani, H.; Bahremand, A.; Saber Chenari, K. & Rostami Khalaj, M. 2015. Evaluation of the Efficiency of AWBM, Sacramento and Tank Rainfall Runoff Model in Runoff Simulation in Arazkoose - Goorganrood Basin, Golestan porovince. Volume 1, Issue 3. 207-221(In Persian).
Sekertekin, A. & Bonafoni, S. 2020. Land Surface Temperature Retrieval from Landsat 5. 7. and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020. 12. 294.
Shabani, M.; Darvishan, SH. & Solaimani, K. 2019. Investigating the Effects of Land Use Change on SpatiotemporalPatterns of Land Surface Temperature and Thermal Islands (Case Study: Saqqez County). Journal of Geography and Environmental Planning, Vol 30, No. 1. (In Persian).
Shojaei, M.; Shayesteh, K. & Attaeian, B. 2019. The Effect of Landscape Pattern on Urban Temperature Changes in Hamadan. Journal Geography and Sustainability of Environment.Volume 9, Issue 3.99-114 (In Persian).
Tariq, A.; Riaz, I.; Ahma, Z.; Yang, B.; Amin, M.; Kausar, R.; Andleeb, S.; Aslam Farooqi, M. & Rafiq, M. 2020. Land surface temperature relation with normalized satellite indices for the estimation of spatio‑temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Sciences.
Valizadeh Kamra, Kh.; Gholamnia, Kh.; Eynali, G. & Moosavi , M. 2017. Estimation land surface temperature and extract heat islands using split window algorithm and multivariate regression analysis (Case Study of Zanjan). Volume 8, Issue 30. 35-50 (In Persian).
Wang, M.; Zhang, Z.; Hu, T. & Liu, X. 2019. A practical single-channel algorithm for land surface temperature retrieval: Application to Landsat series data. Journal of Geophysical Research: Atmospheres. 124. 299–316.
Wang, F.; Zhihao, Qin.; Caiying, Song.; Lili, Tu.; Arnon, Karnieli. & Shuhe, Zhao. 2015. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015. 7. 4268-42
Zakizadeh, F. & Talebi, A. 2016. Investigation of the Efficiency of Different Methods for Parameters Estimation of Nash’s instantaneous unit Hydrograph in Simulating Flood Hydrograph (Case Study: Manshad Watershed). Journal of Watershed Management Research Vol. 7. No. 14. (In Persian).