برآورد و مقایسه میزان انباشت Co2 دو توده پهن‌برگ و سوزنی‌برگ در جنگل‌های ارسباران با توجه به شرایط فیزیوگرافی منطقه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، بخش تحقیقات جنگل‌ها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران

2 دانشیار پژوهش، مؤسسۀ تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران،‌ ایران

3 کارشناسی ارشد، دانشگاه تربیت مدرس، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، AREEO، تبریز، ایران

4 کارشناسی، دانشگاه گیلان، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، AREEO، تبریز، ایران

5 بخش تحقیقات جنگل‌ها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز

چکیده

روش‌های مختلفی برای تخمین میزان انباشت Co2 و بررسی ساختار پیوستگی مکانی آن وجود دارد. این تحقیق به تخمین میزان انباشت Co2 در رویه زمینی دو توده ممرز و ارس در جنگل‌های ارسباران و بررسی تاثیر عوامل فیزیوگرافی شیب، جهت و ارتفاع بر میزان انباشت Co2 پرداخت و نیز پراکنش مکانی میزان انباشت Co2 در دو توده‌ با روش زمین آمار حاصل شد. نتایج نشان داد میانگین میزان انباشت Co2 در دو توده ممرز و ارس به ترتیب 47/358589 و 59/9992 کیلوگرم در هکتار بود که اختلاف معنی‌داری در سطح 05/0 p بین آنها وجود داشت اما رابطه معنی‌داری بین تغییرات عوامل فیزیوگرافی و میزان انباشت Co2 در دو توده وجود نداشت. در ادامه واریوگرام تجربی برای آنها رسم شد که دو توده ممرز و ارس به‌ترتیب با 91% و 99% دارای پیوستگی ساختار مکانی قوی بودند. سپس نقشه پراکنش انباشت Co2 کل منطقه به‌دست آمد. با ارزیابی صحت مدل‌های به دست آمده، نتایج نشان داد که جذر میانگین مربعات خطا برای دو توده ممرز و ارس به‌ترتیب 308/0 و 334/0 کیلوگرم در هکتار بود که نتایج مبین آن است که با توجه به ساختار قوی مکانی و اثر قطعه‌ای کم در دو توده، میزان خطای مدل‌ها بسیار کم بوده و قابل قبول هستند. با توجه به اهمیت روزافزون تغییر اقلیم می‌توان چنین نتیجه‌گیری نمود که با شناخت پتانسیل گونه‌هایی که توانایی بیشتری برای ترسیب کربن دارند و همچنین بررسی عوامل فیزیوگرافی تاثیرگذار بر فرایند ترسیب کربن، می‌توان اصلاح و احیای جنگل‌های ارسباران را از جنبه ترسیب کربن بهتر دنبال کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation and Comparison of Co2 Accumulation Between Two Broad-Leaved and Coniferous Stands in Arasbaran Forests Based on Physiographical Characteristics

نویسندگان [English]

  • Raheleh Ostadhashemi 1
  • Reza Akhavan 2
  • Azim Abbaslou 3
  • Ghasem Safapour 4
  • Mohamad Pourkhaki 5
1 Assist. Profe. Forests and Rangelands Research Department, East Azerbaijan Agriculture and Natural Resources Research and Education Center, AREEO,Tabriz, Iran
2 Assoc. Profe. Research Institute of Forests and Rangelands, AREEO, Tehran, Iran
3 MSc, Tarbiat Modarres University, East Azerbaijan Agriculture and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
4 BSc, Guilan University, East Azerbaijan Agriculture and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
5 Forests and Rangelands Research Department, East Azerbaijan Agriculture and Natural Resources Research and Education Center,Tabriz
چکیده [English]

There are various methods for estimating Co2 accumulation and assessing the spatial structure. This research aimed to estimate the aboveground Co2 accumulation in two stands of Carpinmus betulus and Juniperus foetidissima in Arasbaran forests, and the effect of physiographical factors such as slope, aspect and altitude on it. Furthermore the spatial distribution of Co2 accumulation was obtained based on geostatistical approach in two mentioned stands. The results showed that the average of Co2 accumulation for hornbeam and juniper stands was 358589.47 and 9992.59 kg /ha respectively, which there was a significant difference between them at the level of P ≤ 0.05. Whereas there wasn’t any significant differences between physiographical variations and Co2 rate in two stands. In addition, the experimental variogram was fitted for two stands that hornbeam and juniper with 91% and 99% indicated the strong spatial structure respectively. So, the distribution map of Co2 accumulation was obtained for the area. Cross- validation of the models revealed that the RMSE for hornbeam and juniper was 0.308 and 0.334 kg /ha respectively which proved precise estimation and acceptable models due to the strong spatial structure and low nugget effect. Considering the importance of climate change, we can improve Arasbaran forests reclamation regarding carbon sequestration by taking into account the carbon sequestration potential of different species and the physiographical factors affecting the carbon sequestration.

کلیدواژه‌ها [English]

  • Geostatistics
  • Spetial structure
  • Arasbaran
  • Carpinmus betulus
  • Juniperus foetidissima
Akhavan, R.; Zobeyri, M.; Zahedi Amiri, G.; Namiranian, M. & Mandallaz, D. 2006. Spatial structure and estimation of forest growing stock using geostatistical approach in the Caspian region of Iran. Iranian journal of natural resources, 59(1): 89-102. (In Persian)
Alijanpour, A. 1996. Study on quality and quantity of Arasbaran Forests (Case Study in Sotan Chay).Master Thesis. Tehran University. (In Persian)

Alijanpour, A. 2000. An Investigation of the Best Statistic Sampling Method in Forests of Arasbaran. PhD Thesis. Tehran University. (In Persian)

Aukland, L.; Moura Costa, P.; Bass, S.; Huq, S.; Landell-Mills, N.; Tipper, R. & Carr, R. 2002. Laying the Foundations for Clean Development: Preparing the Land Use Sector. IIED, London.
Ciesla, W.M. 1995. Climate change, forests and forest management- an overview. Forestry paper 126, FAO, Rome.
Crivellaro, A. & Schweingruber, F.H. 2013. Atlas of Wood, Bark and Pith Anatomy of Eastern Mediterranean Trees and Shrubs. Springer Heidelberg New York Dordrecht London. DOI 10.1007/978-3-642-37235-3.
FAO. 2018. The state of the world’s forests. Forest pathways to sustainable development. Rome. Licence: CC BY-NC-SA 3.0 IGO.
Fatholahi, M.; Fallah, A.; Hojjati, M. & Kalbi, S. 2013. Comparison of Carbon Stock in Plantation and Natural Forest of Maple and Hornbeam. The 3rd international conference on environmental planning & management. Tehran University. (In Persian)
Fisher, B. & Turner, R.K. 2008. Ecosystem Services: Classification for Valuation. Biol. Conserv. 141: 1167–1169.
FRA. 2010. Global Forest Resources Assessment. Main report, 163, Rom.
Gren, I.M. 2015. Estimating Values of Carbon Sequestration and Nutrient Recycling in Forests: An Application to the Stockholm-Mälar Region in Sweden. Forests. 6: 3594-3613.
Guo, Z.; Xiao, X.; Can, Y. & Zheng, Y. 2001. Ecosystem functions, Services and their values: a case study in Xingshan county of China. Ecological Economics. 38: 141-154.
Hasani Pak, A. 2015. Geostatistics. Tehran University, 330 p. (In Persian)
Hejazi, R. 2005. Wood technology and wood industries. Tehran University, 322p. (In Persian)
Hytönen, J.; Aro. L. & Jylhä, P. 2018. Biomass production and carbon sequestration of dense downy birch stands on cutaway peatlands Scandinavian. Journal of Forest Research. https://doi.org/ 10.1080/ 02827581. 2018. 1500636.1-8
IPCC, 2014. A Synthesis Report. (At http://www.ipcc.ch/pdf/assessment report/ar5/syr/ AR5_SYR_ FINAL_All_Topics.pdf). May 29, 2015.
Javanshir, K. 1976. Atlas of Iran woody plants. Published by society of natural resources and human environment conservation.
Jo, H.K. 2002. Impacts of Urban Greenspace on Offsetting Carbon Emissions for Middle Korea. J. Environ. Manag. 64: 115–126.
Khademi, A.; Babaei Kafaki, S. & Mataji, A. 2009. Investigation on the amount of biomass and its relationship with physiographic and edaphic factors in oak coppice stand (Case study Khalkhal, Iran). Iranian journal of forest, 1(1): 57-67. (In Persian)
Kim, T.J.; Bullock, B.P. & Wijaya, A. 2016. Spatial interpolation of above-ground biomass in Labanan concession forest in east Kalimantan, Indonesia. Mathematical and Computational Forestry & Natural-Resource Sciences. 8 (2): 27- 39.
Li, F. & Wang, R. 2003. Evaluation, Planning and Prediction of Ecosystem Services of Urban Green Space: A Case Study of Yangzhou City. Acta. Ecol. Sin. 23: 1929–1936.
Li, J.; Ren, Z. & Zhou, Z. 2006, Ecosystem Services and Their Values: a Case Study in the Qinba Mountains of China. Ecological Researches. 21: 597 – 604.
Li, P.; Zhu, J.; Hu, H.; Guo, Z.; Pan,Y.; Birdsey, R. & Fang, J. 2016. The relative contributions of forest growth and areal expansion to forest biomass carbon. Biogeosciences. 13: 375–388.
Ma, J.; Xiao, X.; Qin, Y.; Chen,B.; Hu,Y.; Li, X. & Zhao, B.2017. Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/PALSAR mosaic data. Forest Ecology and Management. 389: 199–210.

Mahmoudi Taleghani, E. A.; Zahedi Amiri, GH. A. D.; Adeli Pishbijari, E. & Sagheb Talebi, KH. 2007. Assessment of carbon sequestration in soil layers of managed forest. Iranian journal of forest and poplar research, 3(29):241-252. (In Persian)

Marshall, A.R.; Willcock, S.; Platts, P.J.; Lovett, J.C.; Balmford, A.; Burgess, N.D.; Latham, J.E.; Munishi, P.K.T.; Salter, R.; Shirima, D.D. & Lewis, S.L. 2012. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation. 154: 20–33.
Miller, R.W. 1997. Urban Forestry: Planning and Managing Urban Green Spaces, (2nd ed). Prentice Hall: Upper Saddle River, NJ, USA.
Mobarghaei, N.; Sharzehei, G.; Makhdoum, M.; Yavari, A. & Jafari, H. 2009. The spatial valuation pattern of co2 absorption function in Caspian forests of Iran. Journal of environmental studies, 35(51): 57-68. (In Persian)
Niknezhad, M.; Fallah, A. & Mohammadi Limaei, S. 2017. Assessment of Ecological Capability and Estimation of Aboveground Biomass in Plantations Darabkola Forest. Ecology of Iranian forest, 5 (10):11-21. (In Persian)
Pan, Y.; Birdsey, R.; Fang, J.; Houghton, R.; Kauppi, P.; Kurz, W.; Phillips, O.; Shvidenko, A.; Lewis, S.; Canadell, J.; Ciais, P.; Jackson, R.; Pacala, S.; McGuire, D.; Piao, S.; Rautiainen, A.; Sitch, S. & Hayes, D. 2011. A large and persistent carbon sink in the world's forests. Science. 300: 988–993.
Panahi, P.; Pourhashemi, M. & Hassani Nejad, M. 2011. Estimation of leaf biomass and leaf carbon sequestration of Pistacia atlantica in national botanical garden of Iran. Iranian journal of forest, 3(1): 1-12. (In Persian)
Pretzsch, H. 2009. Forest Dynamics, Growth and Yield (From Measurement to Model). Springer-Verlag Berlin Heidelberg.
Regis Raimundo, M.; Ferraco Scolforo, H.; Marcio de Mello, J.; Roberto Soares Scolforo, J.; Paul McTague, J. & Aparecida dos Reis, A. 2017. Geostatistics Applied to Growth Estimates in Continuous Forest Inventories. For. Sci. 63(1):29–38.
Ripley, B.D. 1981. Spatial statistics. New York, Wiley.
Soleimani, P. & Parsapajouh, D. 1974. Investigation of moisture content, specific gravity and amount of dry matter per unit of the most important forest wood in Iran. Journal of Natural Resources, 1(1): 26-35. (In Persian)
Teimouri, I.; Salarvandian, F. & Ziarii, K. 2014. The Ecological Foot Print of Carbon Dioxide for Fossil Fuels in the Shiraz. GeoRes, 29 (1):193-204. (In Persian)
Vahedi, A. & Mattagi, A. 2014. Amount of carbon sequestration distribution associated with oak tree’s (Quercus castaneifolia C.A. May) bole in relation to physiographical units of hyrcanian natural forests of Iran. Iranian journal of forest and poplar research, 21(4):716-728. (In Persian)
Varamesh, S. 2009. Comparison of carbon sequestration of broadleaf and coniferous species in urban forest (Case study: Chitgar Park- Tehran). Master Thesis. Tarbiat Modarres University. (In Persian)
Webster, R. & Oliver, M.A. 2007. Geostatistics for Environmental Scientists. 2nd edition. John Wiley & Sons, Ltd.