برآورد انتشار آلاینده‌های هوا ناشی از سوزاندن بقایای کشاورزی در استان خوزستان بر اساس آمار و تصاویر ماهواره مودیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مکانیزاسیون کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

2 استاد گروه ماشین‌های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

3 دانشیار گروه ماشین‌های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

4 استادیار گروه ماشین‌های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

10.22034/eiap.2023.179284

چکیده

یکی از روش‏های متداول و نادرست مدیریت بقایای محصولات کشاورزی در مزارع، حذف بقایا از طریق سوزاندن است. بسیاری از کشاورزان استان خوزستان که یکی از قطب‏های کشاورزی ایران می‏باشد بقایای محصولات خود را در فصل برداشت می‏سوزانند، این امر منجر به انتشار آلاینده‏های هوا و گازهای گلخانه‏ای، فقیر شدن خاک، کاهش بازدهی نهاده‏ها و پیامدهای منفی دیگری می‏شود. در این پژوهش برای برآورد میزان سوزاندن بقایای سالانه محصولات کشاورزی، از تصاویر ماهواره‏ای مودیس، آمارنامه‏های موجود، بررسی‏های مزرعه‏ای و کسب اطلاعات از کشاورزان استفاده شد. نتایج حاصل از پردازش و تصحیح تصاویر ماهواره‌‌ای مودیس سال‏های 2017، 2018 و 2019 استان خوزستان نشان داد که حداقل سطح مزارع سوخته شده در این سال‌ها به ترتیب برابر 137102، 119705 و 195635 هکتار در سال است. در سال 2019 سوختن 1259005 تن بقایای خشک، سبب تولید1525760 تن CO2، 54560 تن CO و همچنین انتشار حدود 6953 تن ذرات معلق کمتر از PM2.5 در هوا گردید. انتشار سایر آلاینده‏ها از قبیل CH2، NOx، N2O، NH3، SO2، NMVOC، BC و OC به ترتیب 2146، 3747، 91، 1213، 466، 4920، 2139 و 1293 تن در سال 2019 برآورد گردید. حفظ بقایا در سطح مزرعه علاوه بر کاهش آلاینده‏های هوا سبب کاهش پتانسیل فرسایش خاک، کاهش مصرف آب، افزایش مواد آلی خاک، کاهش فشردگی و در نهایت افزایش عملکرد خواهد شد. مدیریت صحیح بقایای محصولات کشاورزی در سطح مزرعه با توسعه مکانیزاسیون کشاورزی و به کارگیری اصول کشاورزی حفاظتی امکان پذیر می ‏باشد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Air Pollutants Emissions From Burning Agricultural Crop Residues in Khuzestan Province Based on Annual Statistics and MODIS Satellite Images

نویسندگان [English]

  • Eisa Bougari 1
  • Mohammad Amin Asoodar 2
  • Afshin Marzban 3
  • Navab Kazemi 4
1 Ph.D, Graduate of Agricultural Mechanization Eng, Agriculture Science and Natural Resources University of Khuzestan
2 2. Professor, Department of Agricultural Machinery and Mechanization Engineering, Agriculture Science and Natural Resources University of Khuzestan, Ahvaz, Iran
3 3. Associate Professor, Department of Agricultural Machinery and Mechanization Engineering, Agriculture Science and Natural Resources University of Khuzestan, Ahvaz, Iran
4 Assistant Professor, Department of Agricultural Machinery and Mechanization Engineering, Agriculture Science and Natural Resources University of Khuzestan, Ahvaz, Iran
چکیده [English]

One of the most common and inappropriate crop residue management practices methods is burning them in fields. In Khuzestan province as one of the major agricultural regions in Iran, many farmers burn the crop residue after harvesting which results in the emissions of pollutants and greenhouse gases to the air, soil depletion, reduction of inputs productivity, and other adverse consequences. In this study, the total crop residue being annually burned was estimated based on Modis satellite images, annual statistics, field surveys, and interview with farmers. The results obtained from the process and correction of Modis satellite images in Khuzestan province indicated that the minimum area of farms in which crop residue was burned during 2017, 2018, and 2019 were 137102, 119705, and 195635 ha/yr, respectively. In 2019, burning 1259005 tonnes of dried crop residue emitted 1525760 t CO2, 54560 t CO and 6953 t particles less than 2.5 ppm. The amounts of other air pollutants such as CH2, NOx, N2O, NH3, SO2, NMVOC, BC, and OC were 2146, 3747, 91, 1213, 466, 4920, 2139, and 1293 t, respectively. Preservation of crop residue on the surface can mitigate the air pollutant emissions as well as reducing soil erosion and water use, improving soil fertility and compaction, and finally increasing crop yield. A proper crop residue management practice is achievable by developing agricultural mechanization and adopting conservation agriculture principles.

کلیدواژه‌ها [English]

  • Agricultural mechanization development
  • Particulate Matter
  • Conservation agriculture
  • Greenhouse gases
  • MODIS satellite
Akagi. S.K., Yokelson. R.J., Wiedinmyer. C., Alvarado. M.J., Reid. J.S., Karl, T., Crounse. J.D. & Wennberg, P.O., 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11 (9): 4039–4072.
Anonymous. 2017. Geographical and climatic features of Khuzestan province. Meteorological Organization of the country, General Department of Meteorology of Khuzestan province. P. 16. (in Persian(.
Anonymous. 2018. Agricultural statistics. The first volume of crops for the crop year 2017-2018. Ministry of Agriculture Jihad, Planning and Economic Deputy, Information and Communication Technology Center. P. 87. (in Persian(.
Cao. G.L., Zhang. X.Y., Gong. S.L. & Zheng, F.C. 2008. Investigation on emission factors of particulate matter and gaseous pollutants fromcrop residue burning. J. Environ. Sci. 20 (1): 50–55.
Cheng, Z., Wang, S., Fu, X., Watson, J.G., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Chow, J.C. & Hao, J. 2014. Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. Atmospheric Chemistry and Physics. 14: 4573-4585.
Delir, Z. Farajzadeh, Z. and Sabeti, M. 1400. Economic and environmental driving factors of fires in Iranian forests and the controlling strategies. Agricultural economics and development. 29 (113): 25-55. (in Persian(.
De Figueiredo. E, B. & Scala Jr. N. L. 2011. Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. Agriculture, Ecosystems and Environment. 141: 77–85.
Dhammapala. R., Claiborn. C., Corkill. J. & Gullett, B. 2006. Particulate emissions from wheat and Kentucky bluegrass stubble burning in wastern Washington and northern Idaho. Atmos. Environ. 40: 1007-1015.
Falah, S., Pourazizi, M. and Rostami, S. 2013. The necessity and potential of biofuel production from cereal residues in the country. Iranian Journal of Energy, 17(2):       65-74. (in Persian(.
Gurjar, B.R., Ravindra, K. and Nagpure, A.S., 2016. Air pollution trends over Indian megacities and their local-to-global implications. Atmospheric Environment, 142. 475-495.
Hao. J. 2014. Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. Atmos. Chem. Phys. 14: 4573-4585.
He. Q., Zhao. X., Lu, J., Zhou. G., Yang. H., Gao. W., Yu. W. & Cheng, T. 2015. Impacts of biomass-burning on aerosol properties of a severe haze event over Shanghai. Particuology 20: 52-60.
Huang. R., Zhang. Y., Bozzetti. C., Ho. K., Cao. J., Han. Y., Daellenbach, K. R., Slowik. J. G., Platt. S. M., Cononaco. F., Zotter. P., Wolf. R., Pieber. S.M., Bruns. E. A., Crippa. M., Ciarelli. G., piazzalunga. A., Schwikowski. M.,Abbaszade. G., Schnelle-kreis. J., Zimmermann. R., An. Z., Szidt. S. Baltensperger. U., El Haddad. I.& Pervot. A.S., 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 7521: 218-222.
IPCC. 2006. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.
IPCC 2013. In: Stocker, T.F., Qin, D., Plattner, G.K., Alexander, L.V., Allen, S.K., Bindoff, N.L.,
Jing. L., Yu. B. & Shaodong, X,. 2016. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products, journal of environmental sciences. 44.:158-170.
Jain, N. Bhatia. A. & Pathak, H. 2014. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 14: 422–430.
Khoshakhlagh, f. Moulai Pardeh, A. and Abadijo, M., M. 2015. Analysis and zoning of climatic potentials of Khuzestan province in order to use solar energy. Journal of Academic and promotional of Nivar. No. 92-93: 13-22. (in Persian(.
Kudo. S., Tanimoto. H., Inomata. S., Saito. S., Pan. X.L. Kanaya, Y., Taketani. F., Wang. Z., Chen. H., Dong. H., Zhang M.& Yamaji. K. Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China. J. Geophys. Res. -Atmos. 119 (12): 7684–7698.
Li. X.G., Wang. S.X., Duan. L., Hao. J.M., Li. C., Chen. Y.S. & Yang. L. 2007. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environ. Sci. Technol. 41 (17): 6052–6058.
Li. H., Han. Z., Cheng. T., Du. H., Kong. L., Chen. J., Zhang. R. & Wang. W. 2010. Agricultural fire impacts on the air quality of Shanghai during summer harvesttime. Aerosol Air Qual. Res. 10: 95-101.
McCarty, J, L., Korontzi, S., Justice C, O. And Loboda, T. 2009. The spatial and temporal distribution of crop residue burning in the contiguous United States. Science of the Total Environment. 407: 5701–5712.
Marlier. M.E., DeFries. R.S., Voulgarakis. A., Kinney. P.L., Randerson. J.T., Shindell, D.T.Chen. Y & Faluvegi. 2013. El Niño and health risks from landscape fire emissions in Southeast Asia. Nat. Clim. aChang. 3 (2): 131–136.
Manjezi, N., 2019. Comparison of green and burnt sugarcane harvesting methods and environmental effects of field burning in burnt sugarcane harvesting in Khuzestan province. Journal of Natural Environment, natural resources of Iran. Round 73(2), pp. 396-383. (in Persian(.
Mousavi, S. M., Falahatkar, S., & Farajzadeh, M. 2017. Assessment of seasonal variations of carbon dioxide concentration in I ran using GOSAT data. In Natural Resources Forum. 41(2). 83-91.
Mousavi, S. M., & Falahatkar, S. 2020. Spatiotemporal distribution patterns of atmospheric methane using GOSAT data in Iran. Environment, Development and Sustainability. 22(5). 4191-4207
Oanh. N. T. K., Bich. T. L., Tipayarom. D., Manadhar. B. R., Prapat. P. and Simpson, C. D. 2011. Characterization of particulate matter emission from open burning of rice straw. Atmos. Environ. 45(2): 493–502.
Omrani, A. 2014. Harvesting green sugarcane, challenges and solutions. 8nd National Conference of Sugarcane Technologists.
Pathak. H., Saharawat. Y, S., Gathala. M. and Ladha. J, K. 2011. Impact of resource-conserving technologies in the rice-wheat system. Greenhouse Gas Science and Technology. 1:261–277.
Ravindra, K., Sidhu, M.K., Mor, S., John, S., Pyne, S., 2016. Air Pollution in India: Bridging the Gap between Science and Policy. J. Hazardous, Toxic, Radioact. Waste 20, A4015003. doi:10.1061/(ASCE)HZ.2153-5515.0000303
Ravindra. K., Singh. T & Mor. S. 2018. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production. doi: https://doi.org/10.1016/j.jclepro.2018.10.031.
Romasanta. R. R., Sander. B.O., Gaihre. Y. K., Carmelita Alberto. M. C., Quilty. M. G. J., Nguyen. V. H., Castalone. A. G,. Balingbing. C., Sandro. J., Jr, T. C. & Wassmann. R. 2017. How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agriculture, Ecosystems and Environment. 239: 143–153.
Sayre. K.D. & Govaerts. B. 2011. Use of Conservation Agriculture to improve farming systems in developing countries. Rainfed Farming Systems. Report no. 1402091311.
Schroeder. W., Prins. E., Giglio. L., Csiszar. I., Schmidt. C., Morisette. J., et al., 2008. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 112: 2711–2726.
Shi. Y., Zang. S., Matsunaga. T. & Yamaguchi. Y. 2020. A multi-year and high-resolution inventory of biomass burning emissions in tropical continents from 2001–2017 based on satellite observations, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2020.122511.
Soheili-Fard. F., Kouchaki-Penchah. H., Raini M.G.N & Chen. G. 2018. Cradle to grave environmental-economic analysis of tea life cycle in Iran. J Clean Prod. 196:953–960.
Van der Werf. G.R., Randerson. J.T., Giglio. L., van Leeuwen. T.T., Chen. Y., Rogers. B.M., Mu. M., van Marle. M.J.E., Morton. D.C., James Collatz. G., Yokelson. R.J. & Kasibhatla, P.S., 2017. Global fire emissions estimate during 1997–2016. Earth Syst. Sci. Data (9): 697−720.
Yaqoubi, M. Ebadian, M. Parsai, R. Masoumi, M. and Bugari, E. 2018. Investigating some influencing factors on the amount of sugarcane waste in green harvesting (Cultivation and Industry of Imam Khomeini (RA)). 9nd National Conference of Sugarcane Technologists. (in Persian(.
 Zhang. L., Liu. Y., Hao. L., 2016. Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ. Res. Lett. 11, 014014.
Zhang. J., Smith. K.R., Ma. Y., Ye. S., Jiang. F., Qi, W., Liu, P., Khalil. M.A.K. Rasmussen. R.A.& Thorneloe. S. A. 2000. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos. Environ. 34: 4537–4549.
Zhang. Y.S., Shao. M., Lin. Y., Luan. S.J., Mao. N., Chen. W.T Wang M. 2013. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region. China Atmos. Environ. 76: 189–199.