بهسازی محیطی شبکه اکولوژیک در بافت فرسوده شهری با استفاده از متریک‌های سیمای سرزمین(منظر)، مورد پژوهی منطقه 9 شهرداری تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی طراحی محیط‌زیست، دانشکده محیط‌زیست، پردیس فنی دانشگاه تهران، تهران، ایران

2 کارشناس ارشد مهندسی طراحی محیط‌زیست، دانشکده محیط‌زیست.، پردیس فنی دانشگاه تهران، تهران، ایران

10.22034/eiap.2023.179863

چکیده

امروزه بافت‌های فرسوده درون شهرها از مشکلات کالبدی، فقدان فضای سبزکافی و دسترسی مناسب و ضعف زیر ساخت‌ها رنج می‌برند. برای غلبه بر این مشکلات برخی از محققان، تقویت زیر ساخت‌های شهری از طریق پیوستگی فضاهای باز و سبز شهری درون محیط‌های شهری را به عنوان راه حل مناسب پیشنهاد کرده‌اند. هدف این پژوهش، بهبود ساختار شبکه اکولوژیک فضای سبز منطقه 9 تهران به کمک متریک‌های سیمای سرزمین برای دستیابی به کیفیت بهتر زندگی و ‌محیط‌زیست می‌باشد. نخست با استفاده از تصاویر ماهواره‌ای و نقشه کاربری اراضی شهر تهران داده‌های جغرافیایی مورد نیاز نقشه شبکه درون بافت فرسوده منطقه 9 تهران تهیه گردید. سپس دوسطح کلان (منطقه) و سطح خرد (محلات دستغیب، امامزاده عبدالله، شمشیری، سرآسیاب مهرآباد) برای احیا ‌لکه‌های فضای سبز انتخاب گردید: مهمترین ‌لکه‌های فضای سبز و تغییرات آن‌ها در طی سال‌های 2002 ، 2017 با کمک متریک‌های سیمای سرزمین  CAP, NP,) MNN, MPS, LPI, AWMSI, MSI, PD) در نرم افزار  FRAGSTATS4.2.1محاسبه گردید. با تعیین مهمترین ‌لکه‌های سبز و شناسایی کریدورهای بهینه به کمک تئوری گراف، و مدل حداقل هزینه، لکه‌ها درسطح کلان و خرد شناسایی و اتصال شبکه اکولوژیک در درون بافت فرسوده ایجاد گردید. یافته‌های پژوهش نشان می‌دهد که ‌لکه‌های سبز از لحاظ وسعت، تعداد، پیوستگی، ترکیب و توزیع فضایی در منطقه ۹ دچار تخریب و خرد دانگی شده و فاصله بین آن‌ها در سال 2017 افزایش یافته است که حفاظت از حریم رود دره کن، انتقال صنایع مزاحم و آزادسازی برای افزایش پوشش گیاهی و شبکه فضاهای سبز توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Environmental Revitalization of Distressed Urban Fabric Through Landscape Metrics Approach, the Case of District 9th Tehran City

نویسندگان [English]

  • Mohammad Reza Masnavi 1
  • Masoomeh Mohseni fard Naghani 2
1 Professor of Architecture, Graduate Faculty of Environment, University of Tehran, Iran
2 MSc. of Environmental Design, Graduate Faculty of Environment University of Tehran, Iran
چکیده [English]

Currently, many decayed urban fabric inside the cities suffer from physical problems, lack of sufficient green space and proper accessibility, and weak infrastructure. In order to overcome these problems, some researchers have proposed the creation and strengthening of urban infrastructures through the connection of open and green spaces in urban environments. The aim of this research is to improve the ecological network structure of the green space network of the 9th district of Tehran through landscape metrics, to achieve a better quality of life and improve the environmental conditions in these areas. Based on this, at first, using satellite images and land use map of Tehran city, the required geographical data of the network map within the decayed fabric of the 9th district of Tehran was prepared. And then two levels were chosen to restore the green patches: the macro level (Teheran District 9) where the most important green spaces and their changes during the years 2002, 2017 with the help of landscape metrics (CAP, NP, MNN, MPS, LPI, AWMSI, MSI, PD) was calculated in FRAGSTATS 4.2.1 software; and the micro level was considered: distressed urban fabric of neighborhoods such as Dastgheyb, Imamzade Abdullah, Shamshiri, Sar Asiyab Mehrabad. By determining the most important green patches and identifying the optimal corridors based on the resistance of the landscape at the macro level and with the help of graph theory and the minimum cost model, these spaces were connected at the macro level and then at the micro level, creating an ecological network within the urban fabric. The findings of the research show that the green patches in terms of size, number, continuity, composition and spatial distribution in Region 9 have suffered severe destruction. And the fragmentation of green spaces and the distance between them has increased in 2017. It is recommended to protect the privacy of the Kan River, transfer the industries from the area and release their spaces to increase the open spaces and vegetation and the network of green spaces in the open spaces of district 9.

کلیدواژه‌ها [English]

  • Distressed fabric green space network
  • Landscape metrics
  • Graph theory
  • Landscape ecology
  • District 9 of Tehran
Adriaensen, F.; Chardon, J.P.; Blust, G.De.; Swinnen, E.; Villalba, S.; Gulinck,H. & Matthysent, E. 2003. The application of ‘Least-Cost’modelling as a functional landscape model. Landscape and Urban Planning. (64): 233-247.
Aminzadeh, B. & Khansefid, M. 2010. A case study of urban ecological networks and a sustainable city: Tehran’s Metropolitan area, Urban Ecosystems. Urban Ecosyst. (13): 23–36.
Bromley, R.D.; Tallon, A.R. & Thomas, C. J. 2005. City center regeneration through residential development: Contributing to sustainability.Urban studies. 42(13): 2407-2429.
Chu, M.; Lu, J. & Sun, D. 2022. Influence of urban agglomeration expansion on fragmentation of green space: (A Case study of Beijing-Tianjin-Hebei Urban Agglomeration). Land. 11(2):275.
Council of Europe, 1996. UNEP, European Center for Natural Conservation. The Pan European Biological and landscape Diversity strategy a vision for Europe's natural heritage.
Forman, R.T.T. 1999. Spatial models as an emerging foundation of road system ecology and a handle for transportation planning and policy. In Third International Conference on Wildlife Ecology and Transportation Florida Department of Transportation US Department of Transportation US Forest Service Defenders of Wildlife.
Goodwin, B.J. & Fahrig, L.2002. How does landscape structure influence landscape connectivity?. Oikos,99 (3):552–570.
Gorbani, R.; Rostaie, S.H. & Karbasi, P. 2021. An analysis of the continuity and cohesion of urban ecologic network through a graph theory model. Journal of Town and Country Planning. (13): 281-309.
Hellmund, P. 1989. Quabbin to Wachusett Wildlife Corridor Study. Harvard Graduate School of Design, Cambridge, MA.
Jaeger, J.A.; Bertiller, R.; Schwick, C.; Müller, K.; Steinmeier, C.; Ewald, K.C. & Ghazoul, J. 2008. Implementing landscape fragmentation as an indicator in the Swiss Monitoring System of Sustainable Development (MONET). Journal of Environmental Management. (88): 737-751.
Jenerette, G.D. &Wu, J. 2001. Analysis and simulation of land use change in the central Arizona (Case Study: Phoenix region). Landscape Ecology.(16):611-626.
Kong, F.; Yin, H.; Nakagoshi, N. & Zong, Y. 2010. Urban green space network development for biodiversity conservation Identification based on graph theory and gravity modeling. Landscape and urban planning. (95):16-27.
Kupfer, J.A. 2012. Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog. Phys. Geogr. (36): 400–420.
Mansour, S.; Al Nasiri, N.; Abulibdeh, A. & Ramadan, E. 2022. Spatial disparity patterns of green spaces and buildings in arid urban areas. Building and Environment. (208):108588.
Masnavi, M. R.; Salehi, E. & Baghbani, M. 2015. Environmental rehabilitation of urban distressed areas for improving the quality of open and green spaces through integrating brownfields into the green infrastructure systems in the framework of sustainable. (Case Study: district 12, Tehran city). Journal of Environmental Studies. (41): 483-498.
McGarigal, K. 1995.FRAGSTATS spatial pattern analysis program for quantifying landscape structure.US department of agriculture, Forest service, Pacific Northwest research station.
McGarigal, K. 2015.FRAGSTATS Help. University of Massachusetts: Amherst, MA, USA, 182.
Mohseni Fard Naghani, M.; Masnavi, M.R. & Zebardast, L. 2019. Ecological reclamation of distressed urban fabric through open and green space networks to enhance the urban vitality based on graph theory and gravity models, (The Case of: district 9, Tehran). Journal of Environmental Studies. (45):525-544.
Nasehi, S. & Imanpour Namin, A. 2020. Assessment of urban green space fragmentation using landscape metrics. (Case study: district 2, Tehran city). Modeling Earth System and Environment. (6): 2405- 2414.
Pham, D.U. & Nakagoshi, N. 2007. Analyzing urban green space pattern and Eco network in Hanoi (Case Study: Vietnam). Landscape Ecol. Eng. (3):143–157.
Ramezani Mehraban, M. & Faryadi, S.H. 2014. Urban green space network development using landscape ecology principles and graph theory (Case Study: region 1 Tehran). Journal of Environmental Sciences. (12):99-110.
Sadeghi Benis, M. 2015. Using landscape metrics in rehabilitation of urban ecological network. Journal of Baghe- Nazar. (12): 53-62.
Schumaker, N.H. 1996. Using landscape indices to predict habitat connectivity. Ecology.(7):1210–1225.
Tischendorf, L. 2001. Can landscape indices predict ecological processes consistently? Landscape Ecology. (16): 235–254.
Taylor, P.D.; Fahrig, L.; Henein, K. & Merriam, G.1993. Connectivity is a vital element of landscape structure.Oikos. (68):571–573.
Turner, M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematic. (20):171-197.
UNEP, 2007. Global environmental outlook GEO4 environment for development. Environment program. USA.
Wu, J.; Jelinski, D.E.; Luck, M. & Tueller, P.T. 2000. Multi scale analysis of landscape heterogeneity: Scale variance and pattern metrics. Geographic Information Sciences. (6): 6-19.
Xio, Na. 2017. Urban green networks: A socio-ecological framework for planning and design of green and blue spaces in sweden and china, Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala.
Zhang, L. & Wang, H. 2006. Planning an ecological network of Xiamen Island (China) using landscape metrics and network analysis. Landscape and Urban Planning. (78):449-456.
Zhang, Z.; Meerow, S.; Newell, J. P. & Lindquist, M. 2019. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban forestry & urban greening. (38):305-317.