تاثیر سناریوهای تغییر کاربری اراضی بر فرسایش خاک در حوزه آبخیز قره سو، استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانش‌‌آموخته کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.22034/eiap.2023.179864

چکیده

فرسایش خاک نتیجه هم‌‌کنشی بین طبیعت و فعالیت‌‌های انسانی و یکی از مشکلات تهدیدکننده پایداری منابع‌طبیعی است. ارزیابی فرسایش خاک با استفاده از مدل‌‌های تجربی یک موضوع همیشگی تحقیقاتی است. مدل جهانی اصلاح شده خاک (RUSLE) احتمالا پراستفاده‌‌ترین نوع مدل‌‌های تجربی فرسایش خاک است. این مدل بر اساس پنج فاکتور (بارش، خاک، توپوگرافی و شیب، پوشش زمین و فعالیت‌‌های مدیریتی) به طور گسترده برای برآورد فرسایش خاک استفاده شده است. اثرات سناریوهای تغییر کاربری زمین بر فرسایش خاک با استفاده از مدل RUSLE در این مطالعه مورد بررسی قرار گرفت. فاکتور C (پوشش زمین) نشان‌‌دهنده ویژگی‌‌های پوشش و مدیریت خاک در مدل RUSLE است. این فاکتور به شدت با نوع پوشش و کاربری زمین مرتبط است. تغییرات کاربری زمین برای برآورد سناریوی آینده برای سال 1427 با استفاده از شبکه عصبی مصنوعی انجام شد. مقادیر فاکتور C بر اساس داده‌‌های چندزمانه استخراج شد. تغییرات فرسایش خاک نیز برای سال‌‌های 1363، 1387، 1397 و 1427 با استفاده سناریوهای مختلف کاربری اراضی و با به‌‌کارگیری مدل RUSLE بررسی شد. نتایج نشان داد که میانگین فرسایش خاک در سناریوهای مختلف کاربری زمین به میزان 21 (سال 1363)، 9/23 (سال 1387)، 6/24 (سال 1397) تن در هکتار در سال بوده و برای سال 1427، 3/27 تن در هکتار در سال خواهد بود. زیرحوزه‌‌های 5، 8 و 11 سه زیر حوزه با بالاترین مقدار فرسایش در تمام سال‌‌ها بوده‌‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Land Use Change Scenarios on Soil Erosion in Gharesoo Watershed

نویسندگان [English]

  • Hamidreza Kamyab 1
  • Sajjad KarbalaSlaeh 2
1 Assistant Professor, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 MSc graduated, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Soil erosion is a result of the interaction between nature and human activities. Soil erosion is one of the major problems that threatens sustainability of natural resources. The assessment of soil erosion using empirical-based models has long been an active research topic. Revised Universal Soil Loss Equation (RUSLE) is possibly the most widely applied and accepted empirical erosion model worldwide. The RUSLE model has been extensively applied for estimating erosion rates based on five parameters (rainfall, soil, topography and slope, land cover, and support practice). The C-factor (land cover) represents the characteristics of soil management and cover in RUSLE and is highly correlated to the land use/land cover practice We analyzed changes in land cover to estimate a future scenario for 2047 using an artificial neural network. The C-factor values were assigned based on historical land use maps. Soil erosion variations in the years 1984, 2008, 2017 and 2047 were estimated using the RUSLE model based on the land use scenarios. The mean soil erosion rates based on the land use scenarios were 21 t/km2/y (1984), 23.9 t/km2/y (2008), 24.6 t/km2/y (2017), and 27.3 t/km2/y (2047). The results showed that the sub-basins 5, 8 and 11 were the third top areas contributing to the increased erosion rate in all years.

کلیدواژه‌ها [English]

  • Land use change
  • Soil erosion
  • RUSLE
Arnoldus, H.M.J. (1977). Methodology used to determine the maxi-mum potential average annual soil loss due to sheet and rill erosion in Morocco. In: Assessing Soil Degradation. FAO Soils Bulletin 34, Rome.
Arnoldus, H.M.J. (1980). An approximation to the rainfall factor in the universal soil loss equation. In: De Boodt, Gabriels -Eds.). Assessment of Erosion. Wiley, New York.
Bamutaze, Y., Mukwaya, P., Oyama, S., Nadhomi, D. & Nsemire, P. (2021). Intersecting RUSLE modelled and farmers perceived soil erosion risk in the conservation domain on mountain Elgon in Uganda. Applied Geography, 126, 102366.
Bazrafshan, O. & Teimouri, F. (2018). Comparison of the efficiency the RUSLE and EPM models in estimating soil erosion and sediment yield according to the sediment rating curve (case study: Jask-Gabrik watershed). New Findings in Applied Geology, 12(23), 50-62. (In Persian).
Benavidez, R., Jackson, B., Maxwell, D. & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R) USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 22(11), 6059-6086.
Bhattacharya, R. K., Chatterjee, N. D., Acharya, P. & Das, K. (2021). Morphometric analysis to characterize the soil erosion susceptibility in the western part of lower Gangetic River basin, India. Arabian Journal of Geosciences, 14(6), 1-22.
 Blanco-Canqui, H. & Lal, R. (2008). Principles of soil conservation and management. Springer Science & Business Media.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C. & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature communications, 8(1), 1-13.
 Chuenchum, P., Xu, M. & Tang, W. (2020). Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research, 8(3), 213-227.
e Silva, L. P., Xavier, A. P. C., da Silva, R. M. & Santos, C. A. G. (2020). Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation, 21, e00811.
Erdogan, N. Nurlu, E. & Erdem, U. 2011. Modelling land use changes in Karaburun by using CLUE-S. ITU AZ, vol. 8, no. 2, pp. 91-102.
Ganasri, B. P. & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961.
Gomes, E., Inácio, M., Bogdzevič, K., Kalinauskas, M., Karnauskaitė, D. & Pereira, P. (2021). Future land use changes and its impacts on terrestrial Ecosystem services: a review. Science of the Total Environment, 146716.
Ghosal, K., Das Bhattacharya, S. A Review of RUSLE Model. J Indian Soc Remote Sens 48, 689–707 (2020).
Haan, C. T., Barfield, B. J. & Hayes, J. C. (1994). Design hydrology and sedimentology for small catchments. Elsevier.
Habashi, K., Mohammadi, S., Karimzadeh, H. R. & Poormanafi, S. (2018). Assessment soil erosion risk in Kohpayeh-segzi plain using Revised Universal Soil Loss Equation (RSLE). (In Persian).
Judex, M. Thamm, H.P. & Menz, G. (2006). Modelling of land- use changes in awest African catchment.
Kafy, A. A., Rahman, M. S., Hasan, M. M. & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18, 100314.
Kamyab, H. R. & Alipour Varaki, S. (2020). Application of Artificial Neural Network in Landscape Change Process in Gharesou Watershed, Golestan Province. Iranian Journal of Applied Ecology, 9(2), 73-87. (In Persian).
Kamyab, H. R. & Salman Mahiny, A. (2013). Modeling urban growth effects on landscape structure in Gorgan city area. Ecopersia, 1(2), 99-112. (In Persian).
Kamyab, H., Salman Mahiny, A., Hoseini, S. M. & Gholamalifard, M. (2011). Using neural network for urban growth modeling (Case study: Gorgan City). Human Geography Research, 43(2), 99-114. (In Persian).
Kebede, Y. S., Endalamaw, N. T., Sinshaw, B. G. & Atinkut, H. B. (2021). Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia. Environmental Challenges, 2, 100009.
Khaleghpanah, N., Shorafa, M., Asadi, H., Gorji, M. & Davari, M. (2018). Comparison and evaluation of RUSLE and RUSLE2 models in soil loss estimation at rangeland hillslopes of Khamesan Watershed, Kurdistan. Iranian Journal of Soil Research, 32(2), 203-219. (In Persian).
Lee, J. H. & Heo, J. H. (2011). Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. Journal of Hydrology, 409(1-2), 30-48.
Macedo, P. S. M., Oliveira, P. T. S., Antunes, M. A. H., Durigon, V. L., Fidalgo, E. C. C. & de Carvalho, D. F. (2020). New approach for obtaining the C-factor of RUSLE considering the seasonal effect of rainfalls on vegetation cover. International Soil and Water Conservation Research.
McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K. & Meyer, L. D. (1987). Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASAE, 30(5), 1387-1396.
Mehri, A., Salmanmahiny, A., Mikaeili Tabrizi, A., Mirkarimi, S. H. & Sadoddin, A. (2018). Prioritization of Land Patches for Rehabilitation of Potential Water Soil Erosion Effects (Case Study: Gharesoo Watershed). Geographic Space, 18(61), 105-123. (In Persian).
Mirsenjeri, M. M., Abedian Mohammadi, S., Karimzadeh, H., & Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model. Iranian journal of Ecohydrology, 5(2), 551-569. (In Persian).
Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan, S., Hennawi, S., Alshihabi, O. & Harsanyie, E. (2020). Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Applications: Society and Environment, 20, 100375. (In Persian).
Moore, I.D., & Burch, G.J. (1986a). Modelling erosion and deposition: topographic effects. Transactions of the American Society of Agricultural Engineers 29, 1624–1630
Moradi, Z. (2020). Relationship between Land Use Change and Water Yield in Gorgan-rood Watershed. Journal of Watershed Management Research, 11(21), 269-280. (In Persian).
Naipal, V., Reick, C., Pongratz, J. & Oost, K. V. (2015). Improving the global applicability of the RUSLE model–adjustment of the topographical and rainfall erosivity factors. Geoscientific Model Development, 8(9), 2893-2913.
Nikkami, D. & Shadfar, S. (2021). Soil erosion mapping in sediment gauged watersheds of Iran. Watershed Engineering and Management, 13(2), 479-496. (In Persian).
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L. & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental science & policy, 54, 438-447.
Prato, T. (2005). Modeling ecological impacts of landscape change. Environmental Modeling & Software, no. 20, pp. 1359-1363.
Rafaai, N. H., Abdullah, S. A. & Reza, M. I. H. (2020). Identifying factors and predicting the future land-use change of protected area in the agricultural landscape of Malaysian peninsula for conservation planning. Remote Sensing Applications: Society and Environment, 18, 100298.
Renard, K.G., Foster, G.R., Weesies, G., McCool, D. & Yoder, D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), United States Department of Agriculture Washington, DC.
Renard, K.G. & Freimund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of hydrology 157(1-4): 287-306.
Romano, G., Abdelwahab, O. M. & Gentile, F. (2018). Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena, 163, 342-353.
Saffari, A., Nouri, A. A. & Karami, J. (2018). Investigation about the influence of land-cover and land use changes on soil erodibility potential, case study: Gharesou, Gorganrood. (In Persian).
Teng, H., Rossel, R. A. V., Shi, Z., Behrens, T., Chappell, A. & Bui, E. (2016). Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Modelling & Software, 77, 156-167.
Veldkamp, A. & Lambin, F. 2001. Predicting land- use change. Agriculture, Ecosystem and Environment, no. 85, pp. 1-6.
Wischmeier, W.H. & Smith, D.D. 1978. Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning.
Yan, H., Wang, L., Wang, T. W., Wang, Z. & Shi, Z. H. (2020). A synthesized approach for estimating the C-factor of RUSLE for a mixed-landscape watershed: A case study in the Gongshui watershed, southern China. Agriculture, Ecosystems & Environment, 301, 107009.
Yang, X. (2014). Deriving RUSLE cover factor from time-series fractional vegetation cover for hill slope erosion modelling in New South Wales. Soil Research, 52(3), 253-261.
Yang, D., Kanae, S., Oki, T., Koike, T. & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological processes, 17(14), 2913-2928.
Yousefi, S., Moradi, H. R., Hosseini, S. H. & Mirzaee, S. (2011). Land use change detection using Landsat TM and ETM+ satellite images over Marivan. (In Persian).