پیش بینی مناطق دارای توان اکوتوریسم با شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی جنگل، دانشکده منابع طبیعی، دانشگاه تهران

2 استاد گروه جنگلداری و اقتصاد جنگل، دانشکده منابع طبیعی، دانشگاه تهران، ایران

3 دانشیار گروه جنگلداری و اقتصاد جنگل، دانشکده منابع طبیعی، دانشگاه تهران، ایران

4 استاد گروه مهندسی مکانیک ماشین‏های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، ایران

چکیده

استفاده تفرجی از منطقه باید مطابق توان محیط‏زیستی آن انجام گیرد. بنابراین، این پژوهش با هدف ارایه یک روش برای مدل‏سازی و رتبه‏بندی مناطق دارای توان اکوتوریسم انجام شد. بدین منظور از روش سیستمی مخدوم با توجه به ویژگی‏های منطقه و شبکه عصبی پرسپترون چندلایه (MLP) برای ارزیابی توان اکولوژیکی منطقه حفاظت ‏شده ارسباران استفاده شد. در گام نخست منابع اکولوژیکی و اقتصادی- اجتماعی شناسایی و نقشه‏های آن‏ها تهیه شدند، سپس با تجزیه و تحلیل و جمع‏بندی داده‏ها در نرم‏افزار ArcGIS نقشه توان اکوتوریسم حاصل شد. در مرحله بعد با استفاده از نتایج روش سیستمی، شبکه عصبی آموزش داده شد و ساختارهای مختلف آن مورد ارزیابی قرار گرفتند و در نهایت نقشه مناطق مناسب گردشگری براساس خروجی شبکه عصبی مدل‏سازی شد. در مرحله آخر با دخالت دادن معیارهای اقتصادی- اجتماعی و جاذبه‏های تفرجی اولویت‏بندی و ارزیابی نهایی انجام گرفت. ارزیابی توان اکولوژیکی با روش سیستمی نشان داد، منطقه دارای توان برای تفرج متمرکز طبقه دو (06/0%) و تفرج گسترده طبقه دو (33/10%) است. توپولوژی 3-9-7 به عنوان بهترین طبقه‏بندی با دقت کلی 98% جهت طبقه‏بندی مناطق تفرجی انتخاب شد و بهترین عملکرد شبکه عصبی به کلاس تفرج متمرکز و کمترین عملکرد به کلاس تفرج گسترده تعلق گرفت. براساس نقشه مدل‏سازی شده، 17/0% منطقه به تفرج متمرکز طبقه 2، 09/10% به تفرج گسترده طبقه 2 و 74/89% به نامناسب برای تفرج اختصاص یافت. مطالعه حاضر نشان داد شبکه عصبی مصنوعی قابلیت طبقه‏بندی مناطق مناسب گردشگری را با دقت بالا دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting of Areas with Ecotourism Capability Using Artificial Neural Network

نویسندگان [English]

  • Manijeh Talebi 1
  • Baris Majnounian 2
  • Majid Makhdoum 2
  • Ehsan Abdi 3
  • Mahmoud Omid 4
1 PhD student of Forest Engineering, Faculty of Natural Resources, University of Tehran
2 Profe. Department of Forestry and forest Economics, Faculty of Natural Resources,
3 Assoc. Profe. Department of Forestry and forest Economics, Faculty of Natural Resources, University of Tehran, Iran
4 Profe. Department of Mechanical Engineering Agricultural Machinery, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran
چکیده [English]

Recreational use of the area must be performed conforms to its ecological capability. Therefore, this study was carried out with the aim of providing a method for modelling and ranking the areas with ecotourism capability. For this purpose, Makhdoum systemic method, regarding to the region specifications, and multi-layer perceptron artificial neural network (MLP) were used to evaluate the ecological capability of Arasbaran protected area. At first, ecological and socio-economic resources were identified and maps of them were provided. Then, ecotourism capability map was prepared by analyzing and overlaying of data in ArcGIS. In the next step, using the results of the systemic method, neural network was trained and its various structures were evaluated. Finally, map of the suitable tourism areas was modeled based on neural network output. In the end, using the socio-economic criteria and recreational attractions, prioritize and final evaluation was performed. Regarding to the systemic analysis, the area has the capability for intensive recreation class-2 (0.06%), and extensive recreation class-2 (10.33%). Topology 7-9-3 was selected as the best classifier with an overall accuracy of 98% for recreational regions classification. The best and the lowest of neural network application were shown to belong to intensive recreation class, and extensive recreation class, respectively. Based on modeled map, 0.17%, 10.09%, and 89.74% of the area were shown to belong to intensive recreation-class 2, extensive recreation-class 2, and unsuitable for recreation, respectively. This study showed artificial neural network has potential for classification of the suitable tourism areas with high accuracy.
 

کلیدواژه‌ها [English]

  • Ecological capability evaluation
  • Ecotourism
  • Systemic analysis
  • Artificial Neural Network
  • Arasbaran Protected Area
Aghajani, H.; Marvie Mohajer, M.R.; Jahani, A.; Asef, M.R.; Shirvany, A. & Azaryan, M. 2014. Investigation of affective habitat factors affecting on abundance of wood macrofungi and sensitivity analysis using the artificial neural network (case study: Kheyrud forest, Noshahr). Iranian Journal of Forest and Poplar Research. 21(4): 617–628 (In Persian).

Ahmadi Sani, N.; Babai Kafaki, S. & Mataji, A. 2011. Ecological possibility of ecotourism activities in the northern Zagros forests using MCDM, GIS and RS. Town and Country Planning. 3(4): 45–64 (In Persian).

Alijanpour, A.; Eshaghi Rad, J. & Banj Shafiei, A. 2009. Investigation and comparison of two protected and non-protected forest stands regeneration diversity in Arasbaran. Iranian Journal of Forest. 1(3): 209–217 (In Persian).
Anonymous, 2016. National forest plan. Forest, Range and Watershed Organization, Tehran, 47 p (In Persian).
Bhuiyan, M. A. H.; Siwar, C.; Ismail, S. M. & Islam, R. 2011. Ecotourism development in recreational forest areas. American Journal of Applied Sciences. 8(11): 1116–1121.
Das, M. & Chatterjee, B. 2015. Ecotourism: A panacea or a predicament. Tourism Management Perspectives. 14: 3–16.
Dehdar Darghahi, M. & Makhdoum, M. 2000. Land use planning for forest catchments of Arasbaran. Journal of Environmental Studies. 26(26): 25–34 (In Persian).
Dhami, I. & Deng, J. 2010. Classification of forest-based ecotourism areas in Pocahontas county of West Virginia using GIS and Pairwise Comparison. Proceedings of the 2010 Northeastern Recreation Research Symposium. USA. PP. 215–223.
Dhami, I.; Deng, J.; Burns, R. C. & Pierskalla, C. 2014. Identifying and mapping forest-based ecotourism areas in West Virginia – Incorporating visitors’ preferences. Tourism Management. 42: 165–176.
Erfanifard, S.Y. 2014. Application of ROC curve to assess pixel-based classification methods on UltraCam-D aerial imagery to discriminate tree crowns in pure stands of Brant`s oak in Zagros forests. Iranian Journal of Forest and Poplar Research. 22(4): 649–663 (In Persian).
Gigovic, L.; Pamucar, D.; Lukic, D. & Markovic, S. 2016. GIS-Fuzzy DEMATEL MCDA model for the evaluation of the sites for ecotourism development: A case study of “Dunavski kljuˇc” region, Serbia. Land Use Policy. 58: 348–365.
Khalili, Z.; Oladi, J.; Hoseini nasr, S.M. & Tekeykhah, J. 2015. Assessment of ecotourism capability of traditional ghoori ghale basin with emphasis on water resources factor. Journal Management System. 5(4):42–62 (In Persian).
Klobucar, D.; Pernar, R.; Loncaric, S. & Subasic, M. 2008. Artificial neural networks in the assessment of stand parameter from an IKONOS satellite image. Croatian Journal of forest Engineering. 29(2): 201–211.
Mahdavi, A.; Niknejad, M. & Karami, O. 2015. A fuzzy multi-criteria decision method for locating ecotourism development. Caspian Journal of Environmental Science. 13(3): 221–236.
Makhdoum, M. 2010. Fundamental of land use planning. Tehran University press, 289 p (In Persian).
Nahuelhual, L.; Carmona, A.; Lozada, P.; Jaramillo, A. & Aguayo, M. 2013. Mapping recreation & ecotourism as a cultural ecosystem service: an application at the local level in Southern Chile. Applied Geography. 40: 71–82.
Peng, C. & Wen, X. 1999. Recent applications of artificial neural networks in forest resource management: an overview. American Association for Artificial Intelligence (AAAI) Technical Report: WS-99-07, Available at: [https://www.aaai.org/Papers/Workshops/1999/WS-99-07/WS99-07-003.pdf ].
Pirmohammadi, Z.; Feghhi, J.; Zahedi, Amiri, Gh. & Sharifi, M. 2010. Environmental capability evaluation appropriate to ecotourism in Zagros forests (Case study: Saman-e-orfie Cham-Haji of Kakareza forest in Lorestan Province). Iranian Journal of Forest and Poplar Research. 18(2): 230–241 (In Persian).

Rashidi, A.; Makhdoum, M.; Feghhi, J. & Sharifi, M. 2011. Evaluation of ecotourism in the forests surrounding Zaribar wetland using Geographic Information System (GIS). Environmental Researches. 1(2):19–30 (In Persian)

Salman Mahini, A.; Reeazi, B.; Naeemi, B.; Babai Kafaki, S. & Javadi Larijani, A. 2009. Ecotourism capability assessment of the Behshahr area by using GIS. Journal of Environmental Science and Technology. 11(1): 187–198 (In Persian).
Sarhangzadeh, J. & Makhdoum, M. 2002. Land use planning of Arasbaran protected region. Journal of Environmental Studies. 28(30): 31–42 (In Persian).

Scandari, S.; Oladi, J. & Yakhkeshi, A. 2011. Investigation of the effect of non-ecologic factors in evaluation of outdoor recreation potential of Sorkhe Hesar forest park using GIS. Town and Country panning. 1(2): 37–58 (In Persian).

Sun, Y.; Wendi, D.; Kim, D. E. & Liong, S. Y. 2016. Technical note: application of artificial neural networks in groundwater table forecasting – a case study in Singapore swamp forest. Hydrology and Earth System Sciences Discussion. 20(4): 1405–1412.
Teimouri, N.; Omid, M.; Mollazade, K. & Rajabipour, A. 2016. An artificial neural network-based method to identify five classes of almond according to visual features. Journal of Food Process Engineering. 39: 625–635.
Vafakhah, M. & Saidian, H. 2015. Forecasting of runoff and sediment using neural network and multi regression in Aghajari Marls. Journal of Range and Watershed Management. 67(3): 487–499 (In Persian).
Wickramasinghe, K. 2012. Ecotourism as a tool for sustainable forest management in Sri Lanka. Journal of Environmental Professionals Sri Lanka. 1(2): 16–29.
Yu, y. & Wang, W. 2014. Application of GIS and artificial neural network model ecotourism relevancy evaluation. Applied Mechanics and Materials. 556-562: 5776–5779.
Zabardast, L.; Jafari, H.R.; Badehyan, Z. & Asheghmoala, M. 2011. Assessment of the trend of changes in land cover of Arasbaran protected area using satellite images of 2002, 2006 and 2008. Environmental Researches. 1(1): 23–33 (In Persian).
Zhang, A.; Zhong, L.; Xu, Y.; Dang, L. & Zhou, B. 2015. Identifying and mapping wetland-based ecotourism areas in the first meander of the Yellow river: incorporating tourist preferences. Journal of Resources and Ecology. 6(1): 21–29.
Zhao, Z.; Chow, T. L.; Rees, H. W.; Yang, Q.; Xing, Z. & Meng, F. R. 2009. Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture. 65: 36–48.
Zheng, X.; Sun, M.; Chen, Y. & Wang, X. 2006. Evaluation of regional ecotourism suitability based on GIS and artificial neural network model: A case study of Zhejiang Province, China. Chinese Journal of Ecology. 25(11): 1435–1441.