صحت‌‌سنجی و ارتقا مدل پیش‌‌بینی تغییرات کاربری اراضی با کنترل رشد توسعه در زنجیره خودکار مارکوف (منطقه مورد مطالعه: حوضه آبخیز قره‌‌سو)

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار گروه محیط زیست، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه بیرجند، ایران

چکیده

فعالیت‌‌های بشری، یکی از عواملی است که تاثیر به‌سزایی بر روند تغییرات کاربری اراضی سرزمین دارد و این تغییرات در بیشتر مواقع ناسازگار با محیط است. بنابراین مدل‌‌های پیش‌‌بینی کاربری اراضی برای برنامه‌‌ریزی استفاده پایدار از سرزمین یک نیاز ضروری است. در این پژوهش با استفاده از مدل زنجیره خودکار مارکوف، مدل‌‌سازی تغییرات کاربری اراضی برای حوضه آبخیز قره‌‌سو به‌‌منظور پیش‌‌بینی آینده، ارتقا یافته است. ارتقای مدل زنجیره مارکوف با وارد کردن نرخ رشد جمعیت و میزان سرانه مورد نیاز هر کاربری در مدل انجام شده است. اعتبارسنجی مدل ارتقا یافته با مقایسه نقشه‌‌ی حاصل از پیش‌‌بینی تغییرات کاربری اراضی برای سال 2014 و نتایج مدل ارتقا یافته بررسی شده است. نتایج حاصل از مقایسه‌‌ی این دو نقشه نشان داد؛ نتایج مدل ارتقا یافته بسیار شبیه‌‌تر به وضع موجود بوده است، که این موضوع به این دلیل است که نرخ رشد جمعیت و به تبع آن سرانه مورد نیاز در توسعه شهری مهمترین پیشران اثرگذار در بر هم زدن نسبت تغییرات در یک روند زمانی است. بنابراین می‌‌توان با لحاظ کردن این عامل در مدل زنجیره مارکوف انعطاف‌‌پذیری این مدل را بیشتر و تا حد زیادی نتایج را به واقعیت نزدیک کرد، که این موضوع به‌‌طور عملی در حوضه آبخیز قره‌‌سو نشان داده شده است. در نهایت از مدل ارتقا یافته‌‌ی زنجیره خودکار مارکوف برای پیش‌‌بینی افق 2030 استفاده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Verification and Upgrading the Land Use Change Prediction Model by Controlling the Growth of Development in the CA-MC (Case Study Area: Gharesou Basin)

نویسندگان [English]

  • Fatemeh Jahinishakib
  • Elham Yousefi Roubiat
Assist. Profe. Faculty of natural resources and environmental science, University of Birjand, Iran
چکیده [English]

Human activities are one of the factors that have a significant impact on the land use change patterns, and these changes are in most cases inconsistent with the environment. Therefore, land-use prediction models for sustainable land-use planning are a requirement. In this research, using the Cellular Automata Markov Chain model, modeling of land use change for the Gharehsou basin has been improved to predict the future. Promotion of the Markov chain model has been done by entering the population growth rate and per capita requirements of each land use in the model. Validation of the upgraded model by comparing the map of the predicted land use change for 2014 and the results of the upgraded model have been reviewed. The results of the comparison of these two maps showed that the results of the upgraded model were much more similar to the current situation since the population growth rate and, consequently, per capita needed for urban development are the most important driving force to disrupt the ratio of changes in a timely trend. Therefore, considering this factor in the Markov chain model more flexibility and great results closer to reality, which is practical in the Gharehsou basin. Finally, the upgraded CA-Markov chain model was used to predict the 2030 basin.

کلیدواژه‌ها [English]

  • land use
  • CA-Markov Chain
  • Population growth rate
  • prediction
  • Gharesou
Ahadnezhad, M. & Hossaini. A. 2011. The evaluation and predicting of urban sprawl using multi-temporal satellite imagery and GIS (a case study Tabriz city 1984-2010). Research and Urban Planning. 2(4): 1 (In Persian).
Alimohammadi, A.; Matkan, A. & Mirbagheri, B. 2010. The evaluation of cellular automata model efficiency in simulation of urban areas development (case study: suburbs of south west of Tehran). Spatial planning (Modares Human Sciences). 14(2 (66)): 81-102 (In Persian).
Arsanjani, J. J.; Helbich, M.; Kainz, W. & Boloorani, A. D. 2013. Integration of logistic regression, Markov chain & cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation & Geoinformation. 21: 265-275.
Behera, M. D.; Borate, S. N.; Panda, S. N.; Behera, P. R. & Roy, P. S. 2012. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model–A geo-information based approach. Journal of Earth System Science. 121(4): 1011-1024.
Corner, R. J.; Dewan, A. M. & Chakma, S. 2014. Monitoring and prediction of land-use and land-cover (LULC) change. In Dhaka megacity. 75-97. Springer, Dordrecht.
Dewan, A. M. & Yamaguchi, Y. 2009. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography. 29(3): 390-401.
Fathizad, H.; Zare, M.; Karimi, H. & Khanamani, A. 2018. Spatio-temporal modeling of landscape changes using Markov chain compilation model and automated cells (Case study: arid and semi-arid area Dehloran). Journal of Arid Biome. 8(1): 11-26 (In Persian).
Gholamalifard, M.; Mirzayi, M. & Joorabian Shooshtari, Sh. 2014. Land use change modeling using artificial neural network and markov chain (Case study: Middle Coastal of Bushehr Province). Journal of RS and GIS for Natural Resources. 5(1): 65 (In Persian).
Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T. & Hokao, K. 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling. 222(20-22): 3761-3772.
Hu, Z. 2007. Modeling urban growth in Atlanta using logistic regression. Computer. Environ. Urban Syst. 31: 667–688.
Kavyan, A.; Zargosh, Z.; Jaffaryan Jolodar, Z. & Darabi, H. 2017. Land use changes modelling using logistic regression and Markov chain in the Haraz watershed. Journal of Natural Environment. 70(2): 397- 411 (In Persian).
Keshtkar, H. & Voigt, W. 2016. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Systems and Environment. 2(1): 10.
Khammar, Gh. A. & Namazi, A. 2017. Prediction and simulation of spatial-physical development pattern of the city of Chabahar, in the horizon of the year 1420 (2041), using RS and automated cells models. Spatial Planning. 7(2): 79-94 (In Persian).
Liu, X.; Li, X.; Shi, X.; Wu, S. & Liu, T. 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling. 211(1-2): 169-181.
Logsdon, M. G.; Bell, E. J. & Westerlund, F. V. 1996. Probability mapping of land use change: a GIS interface for visualizing transition probability. Compute Environ Urban Syst. 20: 389-398.
Luna, R. & Robles, B. 2003. Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico. Landscape Ecology. 18(2): 159–171.
Mishra, V. N. & Rai, P. K. 2016. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Orginal Paper, Arab J Geosci. 9: 249.
Moghadam, H. S. & Helbich, M. 2013. Spatiotemporal urbanization processes in the megacity of Mumbai India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 40: 140–149.
Nooroldin, M.; Neysani Samani, N. & Tomanain, A. 2018. Simulation of urban development in Tabriz using CA-Markov model and multi-criteria decision making. Human geography research. 50(1): 217-231 (In Persian).    
Prakasam, C. 2010. Land Use and Land Cover Detection through Remote Sensing. Approach: A Case Study of Kodaikanal taluk, Tamilnadu. International Journal of Geometics and Geosciences. 1(2): 150-158.
Quintero, G. V.; Moreno, R. S.; García, M. P.; Guerrero, F. V.; Alvarez, C. P. & Alvarez, A. P. 2016. Detection and Projection of Forest Changes by Using the Markov Chain Model and Cellular Automata. Sustainability. 8(3): 1-13.
Raheli namin, B. & Mortazavi, S. 2018. Predicting the spatial land use changes and development of residential areas using CA_MARKOV and GEOMOD methods. Case study: Ghara-su basin, Golestan Province. Geographic Space. 18(62): 159-169 (In Persian).
Rahnama, M. & Ajza Shokouhi, M. 2017. Detection of land use / land cover changes in gonbad-e-kavus city using remote sensing. Geographical Data. 26(103): 147-160 (In Persian).
Ramezani, N. & Jafari, R. 2015. Land use/cover change detection in 2025 with CA-Markov chain model (case study: Esfarayen). Geographical Research. 29(4): 83-96 (In Persian).
Rawat, J. S., & Kumar, M. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India, Egypt. J. Remote Sensing Space Sci. 18(1): 77-84.
Regional Water Company of Golestan. 2015. Iran Water Resource. Manage. Co. Website. URL. http://www.gsrw.ir/SC.php?type=static&id=69 (In Persian).
Rezazadeh, R. & Mirahmadi, M. 2009. Cellular automata model, a new approach in urban growth simulation. Journal of Technology of Education. 4(1): 47-55 (In Persian).
Salmanmahiny, A. 2013. Golestan province land use planning report. Management and planning organization. Islamic Republic of Iran, Golestan (In Persian).
Sang, L.; Zhang, C.; Yang, J.; Zhu, D. & Yun, W. 2011. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 54(3): 938-943.
Soe, W. M. & Le, W. 2006. Multicriteria decision approach for land use and land cover change using Markov chain analysis and a cellular automata approach. Canadian J.Rem. Sens. 32: 390–404.
Sue, S.; Xiao, R.; Jiang, Z. & Zhang, Y. 2012. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography. 34: 295-305.
Taheri, M.; Gholamalifard, M.; Riahi Bakhtiari, A. & Rahimoghli, Sh. 2014. Land cover changes modeling of Tabriz Township using artificial neural network and Markov chain, Physical Geography Research Quarterly. 45(86): 97-121 (In Persian).
Thomas, H. & Laurence, H. M. 2006. Modelling and projecting land-use and land-cover changes with a cellular automaton in considering landscape trajectories: an improvement for simulation of plausible future states’. EARSeL e Proceedings. 5: 63–76.
Turner, M. G. & Ruscher, C. L. 2004. Change in landscape patterns in Georgia. USA. Ecol. 1(4): 251421.
Wang, W.; Zhang, C.; Allen, J. M.; Li, W.; Boyer, M. A.; Segerson, K.; John, A. & Silander, Jr. 2016. Analysis and Prediction of Land Use Changes Related to Invasive Species and Major Driving Forces in the State of Connecticut. Land. 5(3): 25.
Weng, Q. 2002. Land use change analysis in the Zhujiang Delta of china using satellite remote sensing, GIS and stochastic modelling. Journal of environmental management. 64(3): 273-284.
Yirsaw, E.; Wu, W.; Shi, X.; Temesgen, H. & Bekele, B. 2017. Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region. Sustainability. 9(7): 1204.
Yu, W.; Zang, S.; Wu, C.; Liu, W. & Na, X. 2011. Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China. Applied Geography. 31(2): 600-608.
Ziaeian Firouzabadi, P.; Shakiba, A.; Matakan, A. & Sadeghi, A. 2009. Remote sensing (RS), geographic information system (GIS) and cellular automata model (CA) as tools for the simulation of urban land use change- a case study of shahr-e-kord. Environmental Sciences. 7(1): 133-148 (In Persian).