بررسی تاثیر فرآیند انعقاد الکتریکی در حذف آنیون های فسفات، سولفات و نیترات از پساب نیشکر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی محیط زیست، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 استادیار گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 استادیار گروه مهندسی محیط زیست، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

رودخانه‌‌ها و منابع آب به دلیل تخلیه کنترل نشده پساب‌‌‌های صنعتی همواره در معرض انواع آلودگی قرار دارند. فاضلاب صنایع نیشکر شامل غلظت بالایی از آنیون‌‌های فسفات، سولفات و نیترات می‌‌باشد؛ که پیش‌‌تصفیه یا تصفیه کامل این پساب‌ها از مواد مغذی و خورنده امری ضروری است. این تحقیق با هدف ارزیابی تاثیر جریان الکتریکی، pH اولیه و زمان ماند، بر حذف آلاینده‌‌های فسفات، نیترات و سولفات از پساب شرکت نیشکر حکیم فارابی با استفاده از الکترود‌‌های آلومینیومی در روش انعقاد الکتریکی انجام شد. حوضچه سپتیک این شرکت به‌‌عنوان ایستگاه نمونه‌‌برداری انتخاب گردید. pH، فسفات، سولفات و نیترات پساب اولیه اندازه‌‌گیری شد. pH پساب در مقادیر 5، 7، 9 و 11 تنظیم گردید. با استفاده از 6 الکترود آلومینیومی، به صورت عمود بر جریان و متصل به مبدل برق به روش تک قطبی، تاثیر تغییرات pH اولیه، پتانسیل الکتریکی (10 و 30 ولت) و زمان ماند (15، 30، 45 و 60 دقیقه) بر راندمان حذف فسفات، سولفات و نیترات مورد ارزیابی قرار گرفت. نتایج تحقیق نشان داد در شرایط ماند برابر در pH های مختلف با افزایش ولتاژ از 10 به 30 ولت میزان حذف فسفات، سولفات و نیترات افزایش می‌‌‌‌یابد. همچنین نتایج نشان داد بیشترین راندمان حذف فسفات در شرایط pH خنثی حاصل می‌‌شود و با افزایش میزان pH از کارایی حذف فسفات کاسته می‌‌گردد. این در حالی است که بیشترین راندمان حذف سولفات و نیترات در شرایط pH بازی حاصل می‌‌شود. همچنین نتایج آزمایش نشان داد در تمام حالت‌‌های pH و ولتاژ با افزایش زمان ماند، درصد حذف یون‌‌های فسفات، سولفات و نیترات افزایش می‌‌بابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Electro Coagulation Process for Phosphate’ Sulfate’ Nitrate Removal from Sugar Cane

نویسندگان [English]

  • Majeed Ebadi 1
  • Ali Asareh 2
  • Reza Jalilizadeh Yingejeh 3
1 M.Sc. Student, Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Assist. Profe. Department of Water Sciences and Engineering, Ahvaz branch, Islamic Azad University, Ahvaz , Iran
3 Assist. Profe. Department oF Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

Rivers and water resources polloution caused by uncontrolled industrial wastewater discharge. Precence of high concentration of phosphate ' sulfate and nitrate anions in sugarcane indusrial wastewater ' required treatment of the waste water for nutrients and corrosive substances deletion. This study is an attempt to investigate the effect of electrical current' initial wastewater PH and retention time on phosphate ' sulfate and nitrate pollutants removal of sugarcane industrial wastewater. In this study ' the electro coagulation method with aluminum electodes were applied for wastewater treatment in sugar cane of Hakim Farabi. 6 electrodes – aluminium in vertical position were connected to power supply by monopolar method. Septic tank was selected for sampling. Initial wastewater concentration and PH were measured for phosphate' sulfate and nitrate. Then the effect of three operation parameters: PH(5' 7' 9' 11) electrical potential (10 and 30 volts) and retention time (15' 30' 45' 60 minutes) for phosphate ' sulfate and nitrate removal efficiency have been investigated. The results showed that in equal retention time and different initial PH the removal of phosphate' sulfate and nitrate could be promoted by increasing the electrical potential from 10 volt to 30 volt.. The results indicated that the highest removal efficiency of phosphate was observed in neutral condition and increasing PH decreases phosphate removal. whereas the highest removal efficiency for sulfate and nitrate was observed in alkaline PH .also the results proved that in all condition of PH and voltage' increasing retention time cause increasing in removal percent for phosphate' sulfate and nitrate.

کلیدواژه‌ها [English]

  • Electrocoagulation
  • Phosphate
  • Sulfate
  • Nitrate
  • Sugare cane
Akyol, A. 2012. Treatment of paint manufacturing wastewater by electrocoagulation. Desalination, 285:91-99.
Al-Anbari, R.H; Albaidani, J.; Alfatlawi, S.M. & Al-Hamdani, T.A. 2008. Removal of Heavy Metals from Industrial Water Using Electro-Coagulation Technique. Twelft International Water Technology Conference, Alexandria, Egypt:1-18.
Al-Qodah, Z. & Al-Shannag, M. 2017. Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review. Journal Separation Science and Technology,52(17):2649-2676.
Al-Qodah, Z.; Al-Shannag, M.; Bani-Melhem, K.; Assirey, E.; Yahya, M.A. & Al-Shawabkeh, A. 2018. Free radical-assisted electrocoagulation processes for wastewater treatment. Environmental Chemistry letters,16(3):695-714.
Cerqueira, A.; Russo, C. & Marques, R.C. 2009. Electro coagulation for textile wastewater treatment. Brazilian Journal of Chemical engineering, 26(4):659-668.
Chatterjee, S.; Lee, D.S.; Lee, M.W. &Woo, S.H. 2009. Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate .Journal of hazardous materials,166(1):508-513.
Dehghani FirouzAbady, A.; Zarei Mahmood Abady, H. & Ehrampush, M. H. 2017. Investigation on Industrial Waste Waters Reuse of Industrial Towns for Agricultural and Irrigation Uses (Case Study: Treatment Plant of Jahan Abad MeybodIndustrial Town). Journal Tolooebehdasht Sci., 16(3):34-45(In Persian).
Fasihi, H. 2015. A study on the the origins and effects of urban and industrial sewages flowing into the some villages of Tehran southern frontage. Journal of Rural Research, 5(4): 911-936 In Persian).
Gao, B. Y.; Yue, Q. Y. & Wang, Y. 2007. Coagulation performance of polyaluminum silicate chloride(PASiC) for water and wastewater treatment. Separation and Purification Technology, 56 : 225–230.
Hossini, H.; Rezaee, A.; Shirmardi, M. & Naeimabadi, A. 2015. Sulfate removal from wastewater using electrocoagulation process: evaluation of effective parameters and costs. JNKUMS, 6(4):787-796(In Persian).
Irdemez, S.; Yildiz, Y.S. & Tosunoglu, V. 2006. Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes. Separation and purification Technology, 52(2):394-401.
Jafarzadeh, N. & Daneshvar, N. 2006. Treatment of Textile Wastewater Containing Basic Dyes by
Electrocoagulation Process. Jornal of Water and Westwater, 17(1):22-29(In Persian).
Jiang, J.Q.; Graham, N. & Andre, C. 2003. Laboratory study of electro-coagulation–flotation for water treatment. J. Water Research, 36:4064-4078.
Khan, M.A.; Ahn, Y.T.; Kumar, M.; Lee, W.; Min, B. & Kim, G. 2011. Adsorption studies for the removal of nitrate using modified lignite granular activated carbon. Separation Science and Technology, 46(16):2575-2584.
Kieu, H. T.Q.; Müller, E. & Horn, H. 2011. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate –reducing bacteria. Water Research, 45(13): 3863-3870.
Koparal, A.S. & Öğütveren, Ü.B. 2002. Removal of nitrate from water by electroreduction and electrocoagulation. Journal of Hazardous Materials, 89(1):83-94.
Lee, P.C.; Gau, S.H. & Song, C.C. 2007. Particle removal of high-turbidity reservoir water by electro-aggregation. J. Environmental Engineering and Management, 17(6): 371-375.
Mahvi, A. H.; Bazrafshan, E.; Mesdaghinia, A. R.; Naseri, S. & Vaezi, F. 2007. Chromium (Cr+6) Removal from Aqueous Environments by Electrocoagulation Process Using Aluminum Electrodes. Jornal of Water and Westwater, 18(2): 28-34(In Persian).
Malakutian, M.; Mahvi, M.H.; Heidari, M.H. & Mostafavi, A. 2011. Comparison of Polyaluminum Silicate Chloride And Electrocoagulation Process in Natural Organic Matter Removal from Surface Water. Scientific Journal of Ilam University of Medical Sciences, 19(2): 26-37(In Persian).
Merzouk, B.; Yakobi, M.; Zongo, I.; Leclerc, J. P.; Paternotte, G.; Pontvianne, S. & Lapivque, F. 2011. Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination, 275(1-3): 181-186.
Mollah, M.Y. A.; Schennach, R.; Parga, J.R. & Cocke, D. L. 2001. Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 84(1):4-29.
Moussa, D.T.; El-Naas, M.H.; Nasser, M. & Al-Marri, M.J. 2017. A comprehensive review of electrocoagulation for water treatment: potentials and challenges. Journal of Environmental Management, 186(1):24-41.
Paula, Jr. DR. & Foresti, E. 2009. Sulfide toxicity kinetics of a UASB reactor, Braz J Chem Eng, 26(4):669-675.
Rahmani, A. & Samarghandi, M. R. 2007. Electrochemical Removal of COD from Effluents. Jornal of Water and Westwater, 18(4): 9-15(In Persian).
Razavi, M.; Saeedi, M. & Jabbari, E. 2012. The Effect of Operating Conditions on Simultaneous Removal of Phosphate, Nitrate and COD from Laundry Wastewater by Electrocoagulation Using Aluminum Electrodes. Journal of Environmental Studies, 38(3): 75-84(In Persian).
Sadeghi, M.; Khosravi, K.; Khezri, S. M. & Bay, A. 2016. A study on the evaluation of Electrocoagulation Efficiency in Wastewater Treatment of Dairy Industry in the form of a Continuous Flow (Case Study of Sewage from Sabah Cheese Factory in Gonbade Kavoos). Journal of Research in Environmental Health, 1(4): 266-274(In Persian).
Saeedi, M. & Khalvati Fahlyani, A. 2010. COD Reduction in Effluent from Southern Pars Gas Refinery Using Electrocoagulation. Jornal of Water and Westwater, 21(1):40-48(In Persian).
Shanshan, G.; Yang, J.; Tran, J.; Ma, F.; Ta, G. & Du, M. 2010. Electro-coagulation–flotation process for algae removal. J. Hazardous Materials, 177: 336-343.
Sillanpaa, M.; Ncibi, M.C.; Matilainen, A. & Vepsalainen, M. 2018. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere,190(2018):54-71.
Tabeidian, M.; Aminsadri, M.; Aghababaie, A.; Taheri, E.; Fatemizadeh, A.; Mahdavi, M.; Bina, B.; Amin, M. M. & Ebrahimi, A. 2015. Survey of efficiency evaluation of modified and unmodified Clinoptilolite for nitrate removal from aqueous solutions. Journal Health Syst Rec, 11(3): 638-649 (In Persian).
Tunturi, P. 1976. Electrochemical treatment of process Wastewater containing colloidal particles. Kemia-Kemi/Finnish Chemical Journal,16: 222-228.
Vasudevan, S.; Lakshmi, J.; Ravichandran, S.; Mohan, S. & Sozhan, G. .2010. Removal of NO3 – from Drinking Water by Electrocoagulation – An Alternate Approach. clean-soil, air, water, 38(3), 225-229.
Yushi, T.; Weihua, H.; Dandan, L.; Wulin, Y.; Bruce, E. L. & Nanqi, R. 2018. Effective phosphate removal for advanced water treatment using energy, migration electricefield assisted electrocoagulation. Water research, 138(2018):129-136.