بررسی پدیده گرد و غبار در استان خوزستان با استفاده از مدلهای تصمیمگیری CHAID و CRT

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه حکیم سبزواری دانشکده علوم محیطی و جغرافیا

2 دانشجوی دکتری آب و هواشناسی کشاورزی، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری

3 دانشجوی دکتری اقلیم شناسی شهری، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری

چکیده

بررسی پدیده گردوغبار در استان خوزستان با استفاده از
مدل‌های تصمیم‌گیری CHAIDو CRT
 
 
مختار کرمی1، رسول سروستان*2، نسرین مرادی مجد3
 
1 استادیار گروه آب و هواشناسی، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، ایران
2 دانشجوی دکترای آب و هواشناسی شهری دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، ایران
3 دانشجوی دکترای آب و هواشناسی کشاورزی دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، ایران
 
(تاریخ دریافت: 08/09/1395؛ تاریخ تصویب: 09/07/1397)
 
 
چکیده
هدف از این پژوهش بررسی پدیده گردوغبار در استان خوزستان و همبستگی بین این پدیده با عناصر بارندگی، سرعت باد و دما در طی سال‌های 2010-1990 است. با استفاده از داده‌های ماهانه، هشت ایستگاه منتخب (مسجدسلیمان، اهواز، رامهرمز، بهبهان، دزفول، آغاجاری، آبادان و امیدیه) استان خوزستان با استفاده از نرم‌افزارهای 17 Minitab، spss19 و Excel 2013 Microsoft بررسی انجام شد. برای این منظور با کمک از آزمون ران تست همگنی داده‌ها مورد بررسی قرار گرفت. از مدل‌های تصمیم‌گیری شامل روش کشف خودکار تعاملات CHAID روش طبقه‌بندی و رگرسیون درختی CRTو آزمون رگرسیون خطی چندمتغیره استفاده شد. آزمون آندرسون دارلینگ و آزمون کلموگروف- اسمیرونوف نشان داد که داده‌های پدیده گردوغبار شهرهای استان خوزستان نرمال است. با استفاده از دو روش CHAID و CRT مشخص شد که باد بهترین پیش‌بینی‌کننده برای طبقه‌بندی گردوغبار در خوزستان است.طبقه باد بیشتر از 00/21 در روش CRT و طبقه باد بیشتر 00/65 در روش CHAID به‌عنوان پیش‌بینی‌کننده اثر معنی‌داری بر طبقه‌بندی گردوغبار ایستگاه‌های سینوپتیک داشته است. همبستگی بین متغیر گردوغبار با دما 425/0 درصد، گردوغبار با سرعت باد 452/0 درصد و بین بارندگی و گردوغبار 311/0- برابر شده است. با افزایش بارندگی در استان خوزستان از تعداد روزهای گردوغبار کاسته می‌شود ولی پارامترهای دما و سرعت باد تا اندازه‌ای با گردوغبار استان همبستگی دارند و متغیرهای سرعت باد، بارندگی و دما تاثیر مستقیم و معنی‌داری بر گردوغبار در استان خوزستان دارد.
 
 
 
کلیدواژه‌ها: گردوغبار، بارندگی، سرعت باد، دما، CHAID،CRT، خوزستان
 
 
 
 
 
* نویسنده مسئول:                                                        Email: r.sarvestan@gmail.com

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Check the Phenomenon of Dust in Khuzestan Province Using Decision Models CHAID and CRT

چکیده [English]

Check the Phenomenon of Dust in Khuzestan Province Using
Decision Models CHAID and CRT
 
 
 
 
 
1Karami, M.; 2*Sarvestan, R.; 3Moradimajd, N.
 
1 Department of Geography, Hakim Sabzevari University, Sabzevar, Iran
2 PhD Student of Urban Climatology, Hakim Sabzevar University, Sabzevar, Iran
3 PhD Student of Agricultural Meteorology, Geography and Environmental Sciences,
Hakim Sabzevari University, Sabzevar, Iran
 
(Received: 2016/11/28; Accepted: 2018/10/02)
 
 
 
Abstract
Aim of this study was to investigate the phenomenon of dust in the Khuzestan province and the correlation between these phenomena with elements of precipitation, speed wind and temperature is between 2010-1990. Statistical method library and using monthly data, eight selected stations (Masjed Soleiman, Ahvaz, Ramhormoz, Behbahan, Dezful, Aghajari, Abadan and Omidiyeh) of Khuzestan province using the softwares Minitab 17, spss 19 and Microsoft Excel 2013. For this purpose, using test homogeneity was examined data. From decision models was used to test, including automatic discovery classification method CHAID and regression trees CRT and test multiple interaction linear regression. Test Anderson-Darling and Kolmogorov-Smirnov showed that dust phenomenon data in Khuzestan province is normal. Using two methods CHAID and CRT was determined that wind is the best predictor for classifying dust in Khuzestan. Wind floors more than 2,100 in the CRT method and floor winds more than 6,500 in the CHAID method as a predictor of significant effect on the classification dust synoptic stations. Correlation between temperatur with dust is 0.425 percent, dust with wind speed 0.452 percent and between dust with rainfall -0.311 percent. With increase precipitation in the Khuzestan province reduced the number of days of dust but the temperature and wind speed are correlated to some extent with dust province and variables such as wind speed, rainfall and temperature have significant impact in the dust Khuzestan province.
 
 
 
 
 
 
 
Keywords: Dust; Rainfall; Wind speed; Temperature; CHAID; CRT; Khuzestan.
 
 
 
 
 
 
 
 

*Corresponding author:                                                                                 Email: r.sarvestan@gmail.com    

کلیدواژه‌ها [English]

  • Dust
  • Rainfall
  • wind speed
  • Temperature
  • CHAID
  • CRT
  • Khuzestan

Aliabadi, K.; Asadi Zangene, M. A. & Dadashi Rodbari, A. 2016. Assessment and monitoring of the strom using remote sensing methods. Quarterly journal of emdad and nejat 1(7):1-20. (In Persian)

Asakereh, H. 2010. ARIMA modeling for the average annual temperature of the city of Tabriz, Journal of geography, 756: 15622-15601.

Bahrami, H. A.; Jalali, M.; Darvishi Bolorani, A. & Azizi, R. 2014. Modeling location dust stroms occur in Khouzestan province. Remote sensing and GIS Pp 95- 114. (In Persian)

Jamalizadeh, M. R.; Moghaddamnia, A.; Piri, J.; Arbabi, V.; Homayounifar, M. & Shahryari, A. 2008. Dust storm prediction using ANN technique (A case study: Zabol city). World academy of science: engineering and technology, 45: 529-537.

Keikhosravi, A. H. 2012. Statistical analysis synoptic dust storm Khorasan razavi province in the 2005-1993 period, Geographical Research, 65: 17-33.

Kurosaki, Y. & Mikami, M. 2003. Recent frequent dust events and their relation to surface wind in east Asia. geophy, 30: 17-36.

Maghami Moghim, Gh. R. 2016. Predict the frequency of dayswith the dust phenomenonin Bojnourd using the time series model AMIRA. First international congress on the applicationof newsciences in geographical studies of Iran. Pp 165- 173. (In Persian)

Malo, A. R. & Nicholson, S. E. 1990. A study of the rainfall and vegetation dynamics in the African sahel using the normalized difference vegetation index. Arid environ, 19: 1–24.

Nickling, W. G. & Brazel, A. J. 1984. Temporal and spatial characteristics of Arizona dust storms (1965–1980). Climatol, 4: 645–660.

Rashki, A.; Kaskaoutis, D. G.; Rautenbach, C. J.; Eriksson, P. G.; Qiang, M. & Gupta, P. 2012. Dust storms and their horizontal dust loading in the Sistan region. Iran. Aeolian research, 5: 51–62.

Salname Amari Khuzestan. 2013. Organization of management and budget planning. (In Persian)

Sun, J.H.; Zhao, L.N. & Zhao, S.X. 2003. An integrated modeling system of dust storm suitable to north China and applications. Clim environ, 8: 125–142.

Westwell, I. 1999. Fact finder guide weather. PRC publishing, 57-58 p.

Yosefi, M. & Kashi Zenouri, L. 2016. Determine the most stuitable method for combining artificial neural network input in order to determine the wind factors on the perdiction of dust strom phenomena ( case study: Yazd). Quarterly journal of research pasture and desert of Iran. 22(2): 240-250. (In Persian)

www.amar.org.ir.