بررسی توانایی گیاه حرا (Avicennia marina) در کاهش فلزات سنگین (سرب، جیوه، وانادیوم و کبالت) موجود در آب منطقه عسلویه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی محیط‌زیست، دانشکده محیط‌زیست، کرج، ایران

2 کارشناسی ارشد محیط‌زیست-آلودگی، دانشکده محیط‌زیست، کرج، ایران

3 استاد دانشکده منابع‌طبیعی دانشگاه تهران، کرج، ایران

4 دکتری تخصصی مهندسی محیط‌زیست، بوشهر، ایران

چکیده

وجود فلزات سنگین در بوم سامانه‌‌های آبی سال‌‌هاست که مشکلات محیط‌زیستی زیادی را به وجود آورده است. این عناصر در نتیجه عوامل طبیعی، فعالیت‌‌های صنعتی و فاضلاب‌‌های شهری وارد محیط می‌‌شوند و از طریق زنجیره غذایی در بدن آبزیان تجمع می‌‌یابند. گیاه حرا به واسطه توانایی خود در تجمع فلزات در اندام‌های خود نقش مهمی در زنجیره غذایی دارد. در این مطالعه توانایی گیاه حرا در جذب فلزات‌‌سنگین (وانادیوم، کبالت، سرب وجیوه) آلوده‌کننده منطقه عسلویه مورد بررسی قرار گرفت. این گیاهان از نهالستانی واقع در دیر تهیه شدند و بعد از قرار گرفتن در پایلوت با غلظت‌‌های 40، 50 میلی گرم در لیتر و 3200، 350 میکرو گرم در لیتر در pH برابر 8/7 از عناصر مذکور، به مدت چهارده روز مورد ارزیابی قرار گرفتند. نمونه‌‌های حاصل از اندام‌های گیاه در اسید غلیظ هضم شدند و غلظت فلزات در آن‌‌ها با استفاده از دستگاه جذب اتمی اندازه‌‌گیری شد. با توجه به نتایج تجربی در پالایش یون وانادیوم، جیوه و سرب با افزایش زمان، افزایش جذب توسط گیاه و درمورد کبالت با افزایش زمان کاهش جذب توسط گیاه همراه بود. در نهایت طبق نتایج تجربی بیشترین جذب توسط این گیاه، به ترتیب، مربوط به یون وانادیوم، جیوه، سرب و کبالت در pH برابر 8/7 صورت گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating of the Mangrove Ability (Avicennia marina) to Reduce the Heavy Metals (Lead, Mercury, Vanadium and Cobalt) From Aqua in Assaluyeh Region

نویسندگان [English]

  • Somayeh Mohammadi 1
  • zahra shabani 2
  • Balghis Khorram 2
  • Afshin Danekar 3
  • Mahdi Tanha ziarati 4
1 Assist. Prof. of College of Environment, karaj, Iran
2 Ms.C of environmental engineering-pollution, College of environment, karaj, Iran
3 Prof. of Coastal Environment Department, Faculty of Natural Resources, College of Agriculture , University of Tehran, Karaj, Iran
4 Ph. D of Environmental engineering, Head of Environmental department, Pars Special Energy Zone, Asalouyeh, Bushehr, Iran
چکیده [English]

The existence of heavy metals in the aquatic ecosystem has caused several environmental problems for many years especially in the industrial regions. These elements enter the environment as a result of natural factors, industrial activities and urban sewage, and accumulate through the food chain in the body of aquatic organisms. The mangrove plant plays an important role in the food chain due to its ability to accumulate metals in its organs. In this study, the ability of mangrove plants to adsorb heavy metals (vanadium, cobalt, lead and mercury) which contaminating the Assaluyeh area was investigated. The plants were made from semi-finished seedlings located in Deir (Booshehr province) and treated in the pilot environment with concentrations of 40, 50 mg / L and 3200, 350 micrograms / liter of pollutants at pH 7.8 for 14 days. Samples which were collected from plant organs were digested in concentrated acid and the then concentration of metals was measured using atomic absorption spectrometry. Considering the experimental data it can be concluded the purification of vanadium, mercury and lead ions from aqua medium increase while adsorption of Cobalt ion decreases by increasing time. Finally, the highest absorption by this plant was related to vanadium, mercury, lead and cobalt ions, respectively, at pH 7.8.

کلیدواژه‌ها [English]

  • Heavy metals
  • Metal accumulation
  • Phytoremediation
  • Avicennia marina
  • Assaluyeh region
Ali, H.; Khan, E. & Sajad, M. A. 2013. Review Phytoremediation of heavy metals Concepts and applications, Chemosphere, 91, 869–881.
Alkort, I. & Garbisu, C. 2001. Review paper Phytoextraction: accost- effective Plant- based technology for the removal of metals from the environment, Bioresource Technology, 77, 229-236.
 Almahasheer, H.; Serrano, O.; Duarte, C. M. & Irigoien, X. 2018. Remobilization of Heavy Metals by Mangrove Leaves; Frontiers in Marine Science, 5, 484-494.
Alzahrani, A. D.; Selim, E.M. M. & El-Sherbiny, M. M. 2018. Ecological assessment of heavy metals in the gray mangrove (Avicennia marina) and associated sediments along the red sea coast of Saudi Arabia, Oceanologia, 60, 513-526.
Atef, M. M.; Salimi, A. & Gheisarpour, J. 2015. Evaluation of Removal of Heavy Metals (Ni, Cr, Cd) by Assaluyeh Mangrove Plant, Iranian Chemical Engineering Journal ,13 (77)119-122 (in Persian).
Cheraghi, M.; Safahieh, A.; Dadolahi, S. A.; Ghanemi, K. & Doraghi, A. 2014. Concenration of Heavy Metals in Avicennia Marin and Sediments in Dayyer Por , Journal of Wetland Ecobiology, 5 (18): 45 – 54.(in Persian)
Davari, A.; Danehkar, A.; Khorasani, N. & Javanshir, A. 2012. Identification of Heavy Metals Contamination at Bushehr,Jouranl of Environmental Studies, 38(3)27-36.(in Persian).
Davari, A.; Khorasani N. & Danehkar A.; 2013, Comparison of Heavy Metal Concentration in Bidekhun, Basatin and Melgonze Mangrove Forests. ijae., 1(2)15-26.
Defew H, D.; Mair, M.; Guzman, H. M. 2005. An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay Pacific Panama Marine Pollution Bulletin. 50(5): 547-52
Dudani, S. N.; Jayendra, L.; & D. Gavali, Patel, T. 2017. Heavy Metal Accumulation in the Mangrove Ecosystem of South Gujarat Coast, India, Turkish Journal of Fisheries and Aquatic Sciences, pp. 755-766. 
Delshab, H.; Farshchi, P. & Keshavarzi, B. 2016. Geochemical distribution, fractionation and contamination assessment of heavy metals in marine sediments of the Asaluyeh port, Persian Gulf. Marine Pollution Bulletin, PP. 11
Ghasemi, S. 2008. Biosorption of Copper from Wastewater by Activated Carbon Preparation from alga sargassum. 24(4):341-8.
Hashim, M.A.; Mukhopadhyay, S.; Sahu, J. N. & Sengupta, B. 2011. Remediation technologies for heavy metal contaminated groundwater, Journal of Environmental Management, 92 : 2355-2388.
He, B.; Li, R.; Chai, M. & Qiu, G. 2014. Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China, Environ Geochem Health, 36(3)467–476.
Jiaol, Z.; Yong, C. & Peng, L. 1997. Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay china. Marina Ecology Progress Series, 159: 293- 301.
Jian, L.; Chongling, Y.; Daolin, D.; Haoliang L.; Jingchun, L. 2017. Accumulation and speciation of Cd in Avicennia marina tissues, International Journal of Phytoremediation, 19(11):1000-1006.
Kamaruzzaman, B. Y.; Rina, Z.; Akbar John, B. & Jalal, K. C. A. 2011. Heavy metal accumulation in commercially important Fishes of south west Malaysian Coast. Research Journal of Environmental Science, 5(6):595-602.
Keshavarz, M.; Mohammadikia, D.; Gharibpour, F. & Dabbagh, A. R. 2012. Accumulation of heavy metals (Pb, Cd,V) in sediment, roots and leaves of Mangrove species in Sirik Creek along the Sea Coasts of Oman, Iran, Journal of Life Science
Pulkownik, A. 2003. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential, Environmental Pollution, 123, 139 – 151.
MacFarlane, G.R. & Burchett, M. D. 2000. Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh," Aquatic Botany, 68: 45–59.
MacFarlane, G. R.; Koller, C. & Blomberg, S. 2007. Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies, Chemosphere, 69: 1454–1464.
MacFarlane, G. R. 2002. Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems, Marine Pollution Bulletin, 44: 244–256.
MacFarlanea, G. R. & Burchettb, M. D. 2002. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh, Marine Environmental Research. 54(1): 65–84.
Malmasi, S.; Jozi, S.; Monavari, S. M. & Jafarian, M. E. 2010. Ecological Impact Analysis on Mahshahr Petrochemical Industries Using Analytic Hierarchy Process Method. International Journal of Environmental Research, 4(4):725-734.
Marchand, C.; Lallier-Verge`s, E.; Baltzer, F.; Albe´ric, P.; Cossa, D. & Baillif, P. 2006 Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana, Marine Chemistry 98(1): 1 – 17.
Moradi, H. ; Razavi, Z.; Heydari khosro, A. & Mahboobi Soofiani, N. 2014. Effect of sediment properties on the accumulation and transfer of heavy metal rates in mangrove trees (Case study: Nayband Bay and Qeshm Island), Applied Ecology, 8, 79-89 (in Persian).
Moreno, F. N.; Anderson, C.; Stewart, R. & Robinson, B. 2009. Analysis of Mercury-Rich plants and mine tailings using the Hydride-Generation AAS method, Brazilian Archives of Biology and Technology, 52(4): 953-960.
Morrissey, J.; Baxter, I. R.; Lee, J.; Li, L.; Lahner, B.; Grotz, N.; Kaplan, J.; Salt, D. E. & Guerinot, L. G. 2009. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis”, The Plant Cell, 21, 3326–3338.
Mremi, S. D. & Machiwa, J. F. 2003. heavy metal contamination of mangrove sediments and the associated biota in daressalaqm, tanznia,Tanzania Journal of science, 29(1):61-76.
Naghipour, D.; Taghavi, K.; Sedaghathoor, S. & Vaezzadeh Marzieh, 2015. Study of Efficiency of Duckweed (Lemna Minor) in Removing of Heavy Metals in Aqueous Solutions, Journal of Wetland Ecobiology, 7(23) 49 – 56 (in persian).
Naidoo, G.; Hiralal, T. & Naidoo, Y. 2014. Ecophysiological responses of the mangrove Avicennia marina to trace metal contamination, Flora Morphology Distribution Functional Ecology of Plants, 209(1):63 – 72.
Nazir, R.; Khan, M.; Masab, M.; Rehman, H.; Rauf, N.; Shahab, S.; Ameer, N.; Sajed, M.; Ullah, M.; Rafeeq, M. & Shaheen, Z. 2015. Accumulation of Heavy Metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water Collected from Tanda Dam kohat, Pharm. Sci. & Res. 7, pp. 89-97.
Nazli, M. F. & Hashim, N. R. 2010. Heavy Metal Concentrations in an Important Mangrove Species, Sonneratia caseolaris, in Peninsular Malaysia, EnvironmentAsia. 3: 50-55.
Regier, N.; Larras, F.; Bravo, A.; Ungureanu, V.; Amouroux, D. & Cosio, C. 2013. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: Accumulation in shoots from the water might involve copper transporters, Chemosphere, 90(2); 595-602.
Rui-Lian, Y.; Gong Ren, H.; Wei Fang, Z. & Wei Fang, I. 2015. Accumulation and Transfer of Heavy Metals in the Mangroves from Quanzhou Bay Wetland, SE Coast of China, Journal of Residuals Science & Technology, 12(1);1544-8053.
Salt, D.E.; Blaylock, M.; Nanda Kumar, P. B. A.; Dushenkov, V.; Ensley, B. D.; Chet, I. & Raskin, I. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants, Biotechnology, 13(5); 468-474.
Schrijvers, J.; Fermon, H. & Vincx, M. 1996. Resource competition between macrobenthicepifauna and infauna in a Kenyan Avicennia marina mangrove forest, Marina Ecology Progress, 136; 123-135.
Skinner, K. & Wright, N. Porter-Goff, E. 2007. Mercury uptake and accumulation by four species of aquatic plants, Environmental Pollution, 145(1); 234-237.
Smith, R. A. H. & Bradshaw, A. D. 1979. The use of metal tolerant plant populations for the reclamation of metalliferous wastes, Journal of Applied Ecology 16(2); 595-612.
Tangahu, B. V.; Sheikh Abdullah, S. R.; Basri, H.; Idris, M.; Anuar, N. & Mukhlisin, M. 2011, A Review on Heavy Metals (As, Pb and Hg) Uptake by Plantsthrough Phytoremediation, International Journal of Chemical Engineering, 1- 31.
Tayebi, L.; Hamidian, A. H.; Danehkar, A. & Poorbagher, H. 2016. An Investigation on The Possibility of Mercury Removal From Wastewater of Bandar Imam Chlor-Alkali Plant Using Phragimates Australis , Journal of Natural Environment (Iranian Journal of Natural Resources), 69(1)95-105 (in Persian).
U. S. EPA. 2001. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites, Office of Solid Waste and Emergency Response. EPA/540/S-01/500.
U.S. EPA. 1997. Status of in situ phytoremediation technology developments for in situ treatment of metal contaminated soils, March. EPA-542-R-97-004.
Vicentim, M. P. & Ferraz, A. 2007. Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose, Enzyme and Microbial Technology, 40(4); 645–652.
Zhou, Y.; Zhao, B.; Peng, Y. & Chen, G. 2010. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments, Marine Pollution Bulletin, 60; 1319-24.