بررسی توانایی برگ گیاه سیر و جاذب‌‌های سلولزی استخراج شده از گیاه گلرنگ در حذف یون‌‌های کادمیم از محلول‌‌های آبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه جیرفت

2 دانشگاه جیرفت٬

چکیده

 
 
در این مطالعه توانایی پودر برگ گیاه سیر برای جذب کادمیم از فاضلاب صنعتی بررسی و اثر فاکتورهای pH، غلظت برگ سیر و غلظت اولیه فلز کادمیم در محلول‌‌های آبی بر درصد جذب و ظرفیت جذب این فلز تعیین شد. محدوده pH، غلظت برگ سیر و غلظت اولیه فلز کادمیم به ترتیب، 8-2، g/l 4-1/0 وmg/l  300-50 بودند. براساس نتایج در pH برابر 5، غلظت برگ سیر g/l 1/0 و غلظت یون‌‌های کادمیمmg/l  100 بالاترین درصد جذب 63/45% و ظرفیت جذب mg/g 25/6 به دست آمد. استفاده از جاذب‌‌های شیمیایی سنتز شده شامل سلولز، سلولز آلدییددار شده، سلولزآمین‌‌دار، سلولز استات‌‌دار و ۲ـ آمینو پیریدین تثبیت شده بر روی سلولز نیز نشان داد که هر چند میزان حذف یون‌‌های کادمیم توسط این مواد سنتزی چند درصد بالاتر از پودر برگ سیر بود اما ظرفیت جذب پایین‌‌تر این مواد نشانگر کارایی بالای پودر برگ سیر برای حذف یون‌‌های فلز کادمیم از محلول‌‌های آبی است. بنابراین، استفاده از پودر برگ سیر به عنوان جاذبی بیولوژیکی و بی‌‌خطر در محیط‌‌زیست راهکاری مناسب و حدود 50 درصد آلودگی کادمیم را در جریان‌‌های صنعتی جذب و خطر آن را کاهش خواهد داد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Ability of Garlic Leaves and Extracted Celluloses From Carthamus Tinctorius to Remove Cadmium Ions From Aqueous Solutions

نویسندگان [English]

  • Malihe Amini 1
  • Atena Naeimi 2
1 University of Jiroft,
2 University of Jiroft,
چکیده [English]

In this study, potential of garlic leaves powder to biosorption of cadmium from industrial wastewater effluent was investigated. The effects of pH, biomass dose and initial concentration of cadmium on the removal of biosorption and uptake capacity were examined. Range of pH, biomass dose and initial concentration of cadmium were 2-8, 0.1-4 g/l and 50-300 mg/l, respectively. According to results, the most cadmium removal (45.63%) and uptake capacity (6.25 mg/g) were obtained in pH of 5, biomass dose of 0.1 g/l and initial cadmium concentration of 100 mg/l. The use of synthesized chemical adsorbents including cellulose, aldehyde functionalized cellulose, amino functionalized cellulose, acetate cellulose and 2-amino pyridine supported on cellulose also were shown that the percentage of removal of cadmium ions by these synthetic materials were a few percentage higher from garlic leaves powder. But, the lower absorption capacity of these materials indicates the high performance of garlic leaf powder to remove heavy metal ions from aqueous solutions. Therefore, use of garlic leaves powder as a biological biosorption is the appropriate candidate and will reduce about 50% the risk of cadmium contamination in industrial streams. 

کلیدواژه‌ها [English]

  • Garlic leaf
  • Cellulose
  • Cadmium
  • Carthamus tinctorius
  • Wastewater
Abdel-Ghani, N. E. D. & El-Chaghaby, G. A.  2007. Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption, International Journal Environment Science Technology, 4(4): 451-456.
Abdel-Ghani, N. E. D. & El-Chaghaby, G. A. 2008. The use of low cost and environment friendly materials for the removal of heavy metals from aqueous solutions, Current World Environment Journal, 3(1): 31-38.
Aguiló, J.; Naeimi, A.; Bofill, R.; Bunz, H.M.; Liobet, A. & Escriche, L. 2014. Dinuclear ruthenium complexes containing a new ditopic phthalazin-bis(triazole) ligand that promotes metal–metal interactions, New Journal of Chemistry, 38: 1980-1987
Algarra, M.; Jiménez, M.V.; Rodríguez-Castellón, E.; Jiménez-López, A. & Jiménez-Jiménez, J. 2005. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41, Chemosphere, 59: 779-786.
Azzam, F.; Galliot, M.; Putaux, J.L.; Heux, L. & Jean, B. 2015. Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers, Cellulose, 3701-3714
Bayramoğlu, G.; Celik, G. & Arica, M.Y. 2006. Studies on accumulation of uranium by fungus Lentinus sajor-caju, Journal of Hazardous Materials, 136: 345-353.
Božić, D.; Gorgievski, M.; Stanković, V.; Štrbac, N.; Šerbula, S. & Petrović, N. 2013. Adsorption of heavy metal ions by beech sawdust–Kinetics, mechanism and equilibrium of the process, Ecological Engineering. 58: 202-206.
Chen, D. & Ven T.G. 2016. Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation, Cellulose, 23: 1051-1059.
Danial, W. H.; Majid,Z. A.;  Muhid, M. N. M.; Triwahyono,S.;  Bakar, M. B. & Ramli, Z. 2015.  The reuse of wastepaper for the extraction of cellulose nanocrystals, Carbohydrate Polymer, 118: 165-169.
Das, P.; Samantaray, S. & Rout, G.R. 1997. Studies on cadmium toxicity in plants: a review, Environmental. Pollution, 98: 29-36.
Genç, ö.; YalçInkaya, Y.; Büyüktuncel, E.; Denizli, A.; ArIca, M.Y. & Bektas, S. 2003. Uranium recovery by immobilized and dried powdered biomass: characterization and comparison, International Journal of Mineral Processing, 68: 93-107.
Ghorbani, F. & Younesi, H. 2008. Removal of cadmium ions by Saccharomyces cervisiae biomass from aqueous solutions, Journal of water and wastewater, 68: 33-39. (in Persian)
Grant, C.A.; Buckley, W.T.; Bailey, L.D. & Selles, F. 1998. Cadmium accumulation in crops, Canadin Journal of Plant Science, 78: 1-17.
Haghiri, F. 1973. Cadmium uptake by plants, Journal of Environmental Quality, 2: 93-(in Persian).
Heydari, A.; Younesi, H. & Mehraban, Z. 2010. Removal of mixtures of lead, nickel and cadmium metal ions from aqueous solutions using modified MCM-41 nanocavity, Journal of water and wastewater, 21(1): 25-33. (in Persian)
Honarmand, M.; Naeimi, A. & Zahedifar, M. 2017. Nanoammonium salt: a novel and recyclable organocatalyst for one-pot three-component synthesis of 2-amino-3-cyano-4H-pyran derivatives, Journal of Iranian Chemical Society, 14:1875-1888. (in Persian)
Jiang, W.; Liu, D. & Hou, W. 2001. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.), Bioresource Technology, 76: 9-13.
Jin, L.; Li, W.; Xu, Q. & Sun, Q. 2015. Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes, Cellulose, 22: 2443-2456.
Kumar, Y.P.; King, P. & Prasad, V. 2006. Removal of copper from aqueous solution using Ulva fasciata sp.-A marine green algae. Journal of hazardous materials, 137(1): 367-373.
Kumar, R.; Bishnoi N.; Garima, J.R. & Bishnoi, K. 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass, Chemical Engineering Journal, 135: 202-208.
Naeimi, A.; Saeednia, S.; Yoosefian, M.; Rudbari, H. A. & Nardo, V.M. 2015. A Novel Dinuclear Schiff Base Copper Complex as an Efficient and Cost Effective Catalyst for Oxidation of Alcohol: Synthesis, Crystal structure, and Theoretical Studies, Journal of Chemical Science,127: 1321-1328. (in Persian)
Naeimi, A.; Amiri, A. & Ghasemi, Z. 2017. A novel strategy for green synthesis of colloidal porphyrins/silver nanocomposites by Sesbania sesban plant and their catalytic application in the clean oxidation of alcohols, accepted in Journal of Taiwan Institute Chemical Engineers. (in Persian)
Nuhoglu, Y. & Oguz, E. 2003. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis, Process Biochemistry, 38: 1627-1631.
Malkotian, M. & Heratinejad tourbati, A. 2013. Investigation of removal efficiency of heavy metals (Cu, Cd and Pb) on saffron leaf in aqueous solutions and determination of adsorption isotherms, Journal of Torbat Heydariyeh university of medical sciences, 3: 15-23. (in Persian)
Moreno, A. L.; Tejeda, D.C.; Calbo, J.; Naeimi, A.; Bermejo, E. & Orti, E. 2014. Biomimetic oxidation of pyrene and related aromatic hydrocarbons. Unexpected electron accepting abilities of pyrenequinones, Chemical Communication(Camb), 50: 9372-9375.
Pasha Zanosi, M.; Raisi, M. & Kurd, B. 2010. Tree leaf ability to remove metal ions from wastewater (Case study: Kojour Noshahr Section), Journal of science and technology in natural resources. (in Persian)
Raftari, H.; Mossami, H.; Ghanji doust, H. & Ayati, B. 2011. The effect of natural adsorbents on the removal of copper and lead, Journal of environmental science, 8(3): 97-108. (in Persian)
Saremi Rad, B.; Esfandiari, A.; Shokr pour, M.; Sofalian, A.; Avans, A. & Mousavi, B. 2014. Effect of cadmium on some morphological and physiological properties of wheat at seedling stage. Journal of plant research (Iranian journal of biology), 27(1): 1-11. (in Persian)
Tabande, L. & Taheri, M. 2016. Evaluation of copper, zinc, cadmium and lead exposure to heavy metals in vegetables in zanjan province, Journal of health and environment, 9(1): 41-56. (in Persian)
Vögeli-Lange, R. & Wagner, G.J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves, Plant Physiology, 92: 1086-1093.
Wagner, G.J.; Sutton, T.G. & Yeargan, R. 1988. Root control of leaf cadmium accumulation in tobacco, Tobacco Science, 32: 88-91.
Weigel, H.J. & Jäger, H.J. 1980. Subcellular distribution and chemical form of cadmium in bean plants, Plant Physiology, 65: 480-482.
Xu, Y.; Qiu, C.; Zhang, X. & Zhang, W. 2014. Crosslinking chitosan into H3PO4/HNO3–NANO2oxidized cellulose fabrics as antibacterial-finished material, Carbohydrate Polymer, 112: 186-194.
Zhang, D.; Hegab, H.E.; Lvov, Y.; Snow, L.D. & Palmer, J. 2016, Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer, SpringerPlus, 5, 48.
Zovar Mousavi, H. & Lotfi, Z. 2012. Utilization of heavy metal ions by olive leaves: Equilibrium and kinetics studies, Journal of applied chemistry, 7(23): 49-56. (in Persian)