مروری بر کاربردهای کانی های رسی در محیط زیست

نوع مقاله: مقاله ترویجی

نویسندگان

1 دانشگاه ولایت

2 عضو هیئت علمی دانشگاه صنعتی اصفهان

چکیده

کانی‌های رسی از فراوانترین مواد موجود در طبیعت هستند که کاربردهای صنعتی زیادی دارند و طی چند دهه اخیر به کاربردهای محیط زیستی آن‌ها نیز توجه ویژه‌ای شده است. در این مقاله مروری، مهمترین کاربردهای محیط زیستی کانی‌های رسی از جمله کنترل محل‌های دفن پسماند، جذب آلاینده‌ها،کاهش مصرف آفت‌کش‌ها و کودها و ... مورد بررسی قرار گرفته است. یکی از مهمترین خصوصیات کانی‌های رسی در رابطه با کاربردشان در محیط زیست، ظرفیت جذب آنهاست که با روش‌های مختلف مثل تیمارهای اسیدی، بازی، سورفکتانت و نمک‌ها افزایش می‌یابد و به عنوان جاذب ارزان و موثر در تصفیه آب و فاضلاب استفاده می‌شوند. پر کاربردترین کانی‌های رسی در این رابطه، بنتونیت است که بدلیل خصوصیات ویژه آن مثل سطح ویژه و ظرفیت جذب بالاتر نسبت به کائولین و سپیولیت، بیشتر مورد استفاده قرار گرفته است. در ایران مهم‌ترین کاربرد بنتونیت در زمینه حفاری و ریخته‌گری است و توجه کمتری به کاربردهای محیط زیستی این ماده ارزشمند شده است، لذا لازم است به عنوان یک ماده خام مهم از لحاظ اقتصادی و محیط زیستی مورد توجه قرار بگیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Environmental Applications of Clay Minerals

چکیده [English]

A Review of the Environmental Applications of
Clay Minerals
 
 
 
 
 
1* Yaghoobi Rahni, S.; 2Mirghaffari, N.
 
 
1. Department of Environment, Velayat University, Iranshahr
2. Department of Natural Recourses, Isfahan University of Technology, Isfahan
 
(Received: 22/Aug/2016 ; Accepted: 17/July/2017)
 
 
 
 
Abstract
Clay minerals are one of the most abundant natural materials that have many industrial applications, while their environmental uses has recieved consideration in the past few decades. In this paper, the most important environmental applications of clay mineral such as landfill liner, adsorption of pollutants, reduction of the need to pesticides and fertilizers and so on have been reviewed. One of the most important characteristics of clay minerals regarding their environmental applications is their sorption capacity that increases through different types of surface modification methods such as acid treatment, alkali, surfactant and salt application that changes them into a cheap and effective adsorbent in water and wastewater treatment. Bentonite is the most-used clay mineral due to its special characteristics such as higher surface area and adsorption capacity compared to the sepiolite and kaolin. In Iran, bentonite is mostly used in drilling and foundry, and little attention has been paid to its environmental applications. Hence, we provide a review of the economic and environmental applications of this mineral.
 
 
 
 
 
 
 
 
 
 
Key wordes: Environment, Clay Minerals, Pollution
 
 
 
 
 
 
 
 

*corresponding author:                                                                         Email: Yaghoobi84@yahoo.com

کلیدواژه‌ها [English]

  • Environment
  • Clay minerals
  • Pollution
  • Adsorbent
  • Landfill

حمیدپور، م. 1388. جذب و واجذب کادمیوم و سرب به وسیله کانی‌های بنتونیت و زئولیت. پایان‌نامه دکتری دانشکده کشاورزی دانشگاه صنعتی اصفهان.

تهران پیوند، 1395. کاغذ کاربن لس،.http://www.tehranpeyvand.com

کریمپور، م. ح. 1378. کانی‌ها و سنگ‌های صنعتی ویرایش جدید (با اصلاحات و اضافات). انتشارات دانشگاه فردوسی مشهد.

رقیمی، م. 1386. مقدمه‌ای بر کانی‌های رسی شیمی، منشاء، کاربرد و اهمیت زیست محیطی. انتشارات دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

میری بیدختی، ر. 1382. مطالعه کانی‌شناسی و زمین‌شناسی کانسارهای کائولین باغسیاه، خاک‌های نسوز و رخ سفید و کبوترکوه گناباد. پایان‌نامه کارشناسی ارشد دانشکده علوم زمین دانشگاه شیراز.

Al-Ani, T. & Sarapää, O. 2008. Clay and clay mineralogy: Physical-Chemical properties and industrial uses Geological Survey of Finland.

Alkaram, U. F.; Mukhlis, A. A. & Al-dujaili, A. H. 2009. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. Journal of Hazardous Materials, 169: 324-332.

Alshameri, A.; R. Abood, A.; Yan, C. & Muhammad, A. M.  2014. Characteristics, modification and environmental application of Yemen’s natural bentonite. Arabian Journal of Geosciences, 7(3): 841-853.

Atia, A. A. 2008. Adsorption of chromate and molybdate by cetylpyridinium bentonite. Applied Clay Science, 41(1): 73-84.

Ayari, F.; Srasra, E. & Trabelsi-Ayadi, M. 2007. Retention of lead from an aqueous solution by use of bentonite as adsorbent for reducing leaching from industrial effluents. Desalination, 206(1-3): 270-278.

Bergaya, F.; Lagaly, G. & Vayer, M. 2006. Handbook of Clay Science, Elsevier Ltd.

Brigatti, M. F.; Medici, L. & Poppi, L. 1996. Sepiolite and industrial waste-water purification: removal of Zn2+ and Pb2+ from aqueous solutions. Applied Clay Science, 11(1): 43-54.

Bullock, A. 2009. Innovative Uses of Organo-philic Clays for Remediation of Soils, Sediments and Groundwater. Paper presented at the WM Conference.

Chauhan, A. & Ogram, A. 2005. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration. Biochemical and Biophysical Research Communications, 327(3): 884-893.

Duan, E.; Han, J.; Song, y.; Guan, Y.; Zhao, W.; Yang, B. & Guo, B. 2013. Adsorption of styrene on the hydrothermal-modified sepiolite. Materials Letters, 111: 150-153.

Duman, O.; Tunc, S. & Gürkan Polat, T. 2015. Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous and Mesoporous Materials, 210, 176-184.

Eren, E. 2009. Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite. Journal of Hazardous Materials, 166(1): 88-93.

Galan, E. 1996. Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31(4), 443-454.

Gil, A.; Assis, F.; Albeniz, S. & Korili, S. 2011. Removal of dyes from wastewaters by adsorption on pillared clays. Chemical Engineering Journal, 168(3): 1032-1040.

González-Pradas, E.; Villafranca-Sánchez, M.; Gallego-Campo, A.; Ureña-Amate, D. & Fernández-Pérez, M. 1999. Removal of linuron from water by natural and activated bentonite. Journal of Chemical Technology & Biotechnology, 74(1): 49-54.

Guney, Y.; Cetin, B.; Aydilek, A. H.; Tanyu, B. F. & Koparal, S. 2014. Utilization of sepiolite materials as a bottom liner material in solid waste landfills. Waste Management, 34(1): 112-124.

Guo, Z.; Xu, J.; Shi, K.; Tang, Y.; Wu, W. & Tao, Z. 2009. Eu(III) adsorption/desorption on Na-bentonite: Experimental and modeling studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1), 126-133.

Haghseresht, F.; Wang, S. & Do, D. D. 2009. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 46(4): 369-375.

Hou, M.F.; Ma, C. X.; Zhang, W. d.; Tang, X. Y.; Fan, Y. N. & Wan, H. F. 2011. Removal of rhodamine B using iron-pillared bentonite. Journal of Hazardous Materials, 186(2): 1118-1123.

Kara, M.; Yuzer, H.; Sabah, E. & Celik, M. S. 2003. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Research, 37(1): 224-232.

Kubilay, Ş.; Gürkan, R.; Savran, A. & Şahan, T. 2007. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1): 41-51.

Kaisha, K. K. K. 1985. Kurita handbook of water treatment, Second English Edition, Kurita Water Industries.

Lenoble, V.; Bouras, O.; Deluchat, V.; Serpaud, B. & Bollinger, J. C. 2002. Arsenic Adsorption onto Pillared Clays and Iron Oxides. Journal of Colloid and Interface Science, 255(1): 52-58.

Li, J.; Li, Y. & Lu, J. 2009. Adsorption of herbicides 2,4-D and acetochlor on inorganic-organic bentonites. Applied Clay Science, 46(3): 314-318.

Li, J.; Li, Y. & Meng, Q. 2010. Removal of nitrate by zero-valent iron and pillared bentonite. Journal of Hazardous Materials, 174(1): 188-193.

Ma, J. & Zhu, L. 2006. Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. Journal of Hazardous Materials, 136(3): 982-988.

Magriotis, Z. M.; Leal, P. V. B.; De sales, P. F.; Papini, R. M.; Viana, P. R. M. & Arroyo, P. A. 2014. A comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolite. Applied Clay Science, 91–92: 55-62.

Mishra, P. C. & Patel, R. K. 2009. Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168(1): 319-325.

Missana, T. & Garci, M. 2007. Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite. Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14): 559-567.

Mohsenipour, M.; Shahid, S. & Ebrahimi, K. 2015. Nitrate Adsorption on Clay Kaolin: Batch Tests. Journal of Chemistry, 2015.

Murray, H. H. 1999. Applied clay mineralogy today and tomorrow. Clay Minerals, 34 (1): 39-49.

Murray, H. H. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17(5): 207-221.

Murray, H. H. 2006. Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays. Elsevier, Vol. 2.

Rodríguez, J. P.; Carretero, M. & Maqueda, C. 1989. Behaviour of sepiolite, vermiculite and montmorillonite as supports in anaerobic digesters. Applied Clay Science, 4(1): 69-82.

Pusch, R. 2015.Bentonite clay: Environmental Properties and Applications.

Putra, E. K.; Pranowo, R.; Sunarso, J.; Indraswati, N. & Ismadji, S. 2009. Performance of activated carbon and bentonite foradsorption of amoxicillin from wastewater:Mechanisms, isotherms and kinetics. water research, 43: 2419–2430.

Jalil, M. E. R.; Vieira, R. S.; Azevedo, D.; Baschini, M. & Sapag, K.. 2013. Improvement in the adsorption of thiabendazole by using aluminum pillared clays. Applied Clay Science, 71: 55-63.

Salman, M.; El-Eswed, B. & Khalili, F. 2007. Adsorption of humic acid on bentonite. Applied Clay Science, 38(1-2), 51-56.

Sanchez, J. M.; Arijo, S.; Muñoz, M. A.; Moriñigo, M. A. & Borrego, J. J. 1994. Microbial colonization of different support materials used to enhance the methanogenic process. Applied Microbiology and Biotechnology, 41(4): 480-486.

Gupta, S. S. & Bhattacharyya, K. G. 2008. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87(1): 46-58.

Gupta, S. S. & Bhattacharyya, K. G. 2012. Adsorption of heavy metals on kaolinite and montmorillonite: a review. Physical Chemistry Chemical Physics, 14(19): 6698-6723.

Shawabkeh, R.; Al-Khashman, O.; Al-Omari, H. & Shawabkeh, A. 2007. Cobalt and zinc removal from aqueous solution by chemically treated bentonite. Environmentalist, 27(3): 357-363.

Shi, W. y.; Shao, H. B.; Li, H.; Shao, M. A. & Du, S. 2009. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials, 170(1): 1-6.

Stepova, K. V.; Maquarrie, D. J. & Krip, I. M. 2009. Modified bentonites as adsorbents of hydrogen sulfide gases. Applied Clay Science, 42(3): 625-628.

Tian, S.; Jiang, P.; Ning, P. & Su, Y. 2009. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Journal, 151(1): 141-148.

Volzone, C. 2007. Retention of pollutant gases: Comparison between clay minerals and their modified products. Applied Clay Science, 36(1): 191-196.

Wagner, J. F. 2013. Chapter 5.3 - Clay Liners and Waste Disposal. In B. Faïza & L. Gerhard (Eds.), Developments in Clay Science, Elsevier, Vol. 5: 663-676.

Wuertz, S.; Bishop, P. L. & Wilderer, P. A. 2003. Biofilms in wastewater treatment: an interdisciplinary approach, IWA Publishing.

Yan, L. g.; Xu, Y. Y.; Yu, H. Q.; Xin, X. D.; Wei, Q. & Du, B. 2010. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. Journal of Hazardous Materials, 179(1): 244-250.

Yang, Z.; Xiao, O.; Chen, B.; Zhang, L.; Zhang, H.; Niu, X. & Zhou, S. 2013. Perchlorate adsorption from aqueous solution on inorganic-pillared bentonites. Chemical Engineering Journal, 223: 31-39.

Yuanyuan, X.; Liangguo, Y.; Haiqin, Y.; Xiaodong, X.; Xianpeng, Z. & Bin, D. Year. 2009. Adsorption of Phosphate from Aqueous Solution by Titanium Pillared Bentonites. In Bioinformatics and Biomedical Engineering. ICBBE 2009. 3rd International Conference on (pp. 1-4).

Zhang, X.; Cheng, l.; Wu, X.; Tang, Y. & Wu, Y. 2015. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue. Journal of Environmental Sciences, 33: 97-105.

Zhang, X.; Hong, H.; Li, Z.; Guan, J. & Schulz, L. 2009. Removal of azobenzene from water by kaolinite. Journal of Hazardous Materials, 170 (2): 1064-1069.

Zhang, Y.; Li, Y.; Li, J.; Sheng, G.; Zhang, Y. & Zheng, X. 2012. Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chemical Engineering Journal, 185: 243-249.

Zheng, H.; Liu, D.; Zheng, Y.; Liang, S. & Liu, Z. 2009. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials 167 (1): 141–147.

Zhou, J.; Wu, P.; Dang, Z.; Zhu, N.; Li, P.; Wu, J. & Wang, X. 2010. Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI) from aqueous solutions. Chemical Engineering Journal, 162(3): 1035-1044.

Zhu, L. & Zhu, R. 2007. Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water. Separation and Purification Technology, 54(1): 71-76.

Zhu, R.; Zhu, L.; Zhu, J.; Ge, F. & Wang, T. 2009. Sorption of naphthalene and phosphate to the CTMAB-Al 13 intercalated bentonites. Journal of Hazardous Materials, 168(2-3): 1590-1594.