تاثیر اصلاح ضایعات معدن ذغال سنگ بر حذف کادمیم از محلول‌‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌‌آموخته کارشناسی ارشد، گروه خاک، دانشکده کشاورزی، دانشگاه شهیدباهنر کرمان، کرمان، ایران

2 دانشیار گروه خاک، دانشکده کشاورزی، دانشگاه شهیدباهنر کرمان، کرمان، ایران

3 استادیار گروه مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان، ایران

چکیده

وجود غلظت‌‌های زیاد فلزاتی مانند کادمیم، کروم، کبالت، جیوه، سرب، روی و آرسنیک درون اجزای بدن انسان‌‌ها به دلیل عدم تجزیه زیستی در طبیعت و نیمه عمر بیولوژیکی طولانی مدت و امکان تجمع در بخش‌‌های مختلف بدن موجودات زنده، بسیار خطرناک است، بنابراین حذف این فلزات سنگین از آب و پساب‌‌ها یک معضل مهم است. روش جذب سطحی به‌‌عنوان یکی از موثرترین فرآیندها جهت حذف فلزات سنگین در نظر گرفته شده است. مواد مختلفی به‌‌عنوان جاذب مورد استفاده قرار می‌‌گیرند. انتخاب جاذبی ارزان قیمت و کارآمد در فرآیند حذف آلاینده‌‌ها مهمترین عامل موثر واقع شدن روش جذب سطحی است. در این مطالعه امکان‌‌سنجی استفاده از ضایعات معدن ذغال سنگ به‌‌صورت طبیعی و اصلاح شده با سود به منظور حذف عنصر آلاینده کادمیم مورد بررسی قرار گرفت. آزمایش‌های هم‌دما و سینتیک جذب به منظور محاسبه ظرفیت و سرعت جذب کادمیم توسط این ترکیب انجام شد. نتایج نشان‌‌ داد ظرفیت ضایعات ذغال‌سنگ اصلاح شده با سود، نسبت به ضایعات طبیعی برای جذب فلز کادمیم بسیار بیشتر است. بر اساس نتایج مطالعات سینتیک مشخص شد 80 درصد جذب کادمیم توسط جاذب اصلاح شده در 60 دقیقه ابتدای برهم‌‌کنش جاذب و جذب‌‌شونده اتفاق می‌‌افتد. به ‌‌طورکلی تغییر در ساختار ضایعات ذغال‌‌سنگ و اصلاح آن، می‌‌تواند قابلیت حذف و جذب عنصر کادمیم از محلول‌های آبی را افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Modifying Coal Mining Waste on the Removal of Cadmium from Aqueous Solutions

نویسندگان [English]

  • Btoul Zakeri 1
  • Azam Jafari 2
  • Somayeh Bakhtiari 3
1 M.Sc Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman, Iran
2 Assoc. Prof. Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman, Iran.
3 Assist. Prof. Department of Civil Engineering, Sirjan University of Technology, Iran
چکیده [English]

The presence of excessive concentrations of metals like cadmium, chromium, cobalt, mercury, lead, zinc and arsenic, inside the human or animal body is very dangerous as they are non-biodegradable in nature and have long biological half-lives and can accumulate in different parts of the body. Therefore, the removal of these heavy metals from water and sewage sludge is an important problem. Adsorption process is considered as one of the most effective processes for the removal of heavy metals. Different materials are used as adsorbents. The choice of inexpensive and efficient adsorbent in the process of removing pollutants is the most important factor in the absorption method. In this study, capacity of the coal mining waste as natural and modified by NaOH for remove of cadmium contaminant element was investigated. Adsorption isotherms and kinetics were performed to calculate the capacity and rate of Cd sorption by this compound. Results showed the adsorption efficiency is higher in coal slag modified by NaOH 2N compared to NaOH 1N. The kinetic results showed that 80 percent of cadmium was quickly sorbed as the equilibrium time was reached within approximately 60 minutes. Overall, the modification and change in the structure of coal slag could lead to increase the ability of removal and sorption of Cd from aqueous solutions.
 

کلیدواژه‌ها [English]

  • Coal mining waste
  • Isotherm
  • Kinetics
  • Cadmium
  • Adsorbent
Abdul Aziz, A.S.; Latifah, A.M.; Che Man, H. & Siva Kumar, N. 2014. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA). Environmental Science and Pollution Research. 21: 7996-8005.
Adebowale, K.O.; Unuabonah, I.E. & Olu-Owolabi, B.I. 2005. Adsorption of some heavy metal ions on sulfate and phosphate-modified kaolinite. Applied Clay Science. 29: 145-148.
Ahmad, A.A. & Hamid, B.H. 2010. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials. 175: 298-303.
Aksu, Z., 2003. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Journal of Process Biochemistry. 38: 1437-1444.
Alinnor, J. 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel: 86: 853-857.
Amann, T.; Weiss, A. & Hartmann J. 2012. Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality. Estuarine, Coastal and Shelf Science. 107: 112-121.
Bailey, S.E.; Olin, T.J. ; Bricka, R.M. & Adrian, D.D. 1999. A review of potentially low-cost sorbents for heavy metals. Water Research. 33: 2469–2479
Brendel, G.F. 1995. Development of an ASTM standard guide for the use of coal combustion fly ash in structural fills, in: Proceedings of the 11th International Symposium on Use and Management of Coal Combustion By-products, Orlando FL, USA.
Cho, H. ; Oh, D. & Kim, K. 2005. A study on removal characteristics of heavy metals from aqueous solution by fly ash. Journal of Hazardous Materials.127: 187–95.
Dimitrova, S.V. 1995. Metal sorption on Blast-Fornace Slag. Department of water Sewerage. 30: 228-232.
Feng, G.; Ma, J.; Zhang, X.; Fang, Q.; Zhang, Xiao, Y.; Qingliang Ma, O. & Wangd, S., 2019. chitosan@bentonite for removal of heavy metals from acid mine drainage. Journal of Colloid and Interface Science, 538:132-141.
Genc-Fuhrman, H.; Mikkelsen, P.S. & Ledin, A. 2007. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from storm water: Experimental comparison of 11 different sorbents. Water Research. 41: 591-602.
Giles, C.H.; Smith, D. & Huitson, A. 1974. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of colloid and interface science. 47: 755–765.
Akpomie, K.G. & Dawodu, F.A. 2014. Efficient abstraction of nickel (II) and manganese (II) ions from solutionon to an alkaline-modified montmorillonite. Journal of Taibah University for Science. 8: 343–356.
Gupta, V.K.; Jain, C.K.; Ali, I.; Sharma, M. & Saini, S.K. 2003. Removal of cadmium and nickel from wastewater using bagasse fly ash – a sugar industry waste. Water Research. 37: 4038-4044.
Gupta, V.K.; Saini, V.K. & Jain, N. 2005. Adsorption of As (III) from aqueous solutions by iron oxide coated sand. J. Colloid Interface Science. 288: 55–60.
Hosseinpoor, S.; Hejazi-Mehrizi, M.; Hashemipoor-Rafsanjani, H., Farpoor, M. H. 2020. The efficiency of coal waate nanoparticles modified with FeCl3in sorption of phosphorous from aqueous solutions. Iranian Journal of Soil and Water Research. 51 (7): 1667-1679. (In Persian)
Holler, H. & Wirsching, U. 1985. Zeolite formation from fly-ash. Fortschr Mineral. 63: 21–43.
Hui, K.S., Chao, C.Y.H. & Kot, S.C. 2005. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials. 127: 89-101.
Igwe, J. C., & Abia, A. A. 2007. Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Eclética Química. 32: 33-42.
Jang-Soon, K.,; Seong-Taek, Y.; Jong-Hwa, L.; Soon-Oh, K. & Ho, Y.J. 2010. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. Journal of Hazardous Materials. 174: 307-313.
Javadian, H.; Ghorbani, F.; Tayeby, H. A. & Hosseini, S.M. 2013. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry. 8: 837–849.
Kalantari, K.; Ahmad, M.B.;  Fard Masoumi, H.R.;  Kamyar Shameli, K.; Basri, M. & Roshanak Khandanlou, R. 2015. surface methodology: Preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 49: 192-198.
Lagergren, S. 1898. Zur theorie der sogenannten adsorption gelˆster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar. 24:1-39.
Lam, N.H.; Ma, H.T.; Mohammed J. K.; Bashir, M.J.K.; Eppe, G., Avti, P. & Nguyen, T.T. 2020. Removal of phosphate from wastewater using coal slag. International Journal of Environmental Analytical Chemistry. Online publishes.
Marzal, P.; Seco, A.; Gabaldon, C. & Ferrer, J. 1996. Cadmium and Zinc Adsorption onto Activated Carbon: Influence of Temperature, pH and Metal/Carbon Ratio. Journal of Chemical Technology and Biotechnology. 66: 279-285.
Memon S.Q.; Memon N.; Shah S.W.; Khuhawar, M.Y. & Bhanger, M.I. 2007. Sawdust—A green and economical sorbent for the removal of cadmium (II) ions. J. Hazard. Mater. 139:116–121.
Mohan, D. & Chander, S. 2001. Single Component and Multi-component Adsorption of Metal Ions by Activated Carbons, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 177: 183-196.
Mohan, S. & Gandhimathi, R. 2009. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials. 169(1-3): 351-359.
Nascimento, M.; Soares, P.S.M. & de Souza, V.P. 2009. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel. 88: 1714-1719.
Noori Kamari, A.; Mirghaffari, N. & Shariatmadari, H. 2010. Cadmium adsorption from aqueous solutions by mine tailings: batch experimental studies. Journal of Environmental Research and Development. 4: 911-916.
Ofomaja A.E.; Naidoo, E.B. & Modise, S.J. 2009. Removal of copper (II) from aqueous solution by pine and base modified pinecone powder as biosorbent. J. Hazard. Mater. 168:909–917.
Ong, S.A.; Toorisaka, E.; Hirata, M. & Han. T. 2013. Comparative study on kinetic adsorption of Cu (II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. Applied Water Science. 3: 321-5.
Panday, K.K.; Prasad, G. & Singh, V.N. 1985. Copper (II) removal from aqueous solutions by fly ash. Water Research. 19: 869-873.
Papandreou, A.; Stournaras, C.J. & Panias, D. 2007. Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Material. 148: 538-547
Pengthamkeerati, P.; Satapanajaru, T. & Chularuengoaksorn, P. 2008. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel. 87: 2469-2476.
Šćiban M.; Klašnja, M. & Škrbić, B. 2006. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard. Mater. 136:266–271.
Shah, B.; Mistry, C. & Sha, A. 2013. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Environmental Science and Pollution Research. 20: 2193-2209.
Shemi, A.; Mpana, R.N.; Ndlovu, S.; van Dyk, L.D.; Sibanda, V. & Seepe, L. 2012. Alternative techniques for extracting alumina from coal fly ash. Minerals Engineering. 34: 30-37.
Singh, S.; Jena, S.K. & Das, B. 2016. Application of pyrophyllite mine waste for the removal of cadmium and lead ions from aqueous solutions. Desalination and Water Treatment. 57 (19): 8952–8966.
Srivastava, P.; Singh, B. & Angove, M. 2005. Competitive adsorption behavior of heavy metals on Kaolinite. Journal of Colloid Interface Science. 290 (1): 28–38.
Ting-Chu, H.; Chung-Chin, Y. & Chin-Ming, Y. 2008. .Adsorption of Cu2+ from water using raw and modified coal fly ashes. Fuel. 87: 1355-1359.
Visa, M. & Chelaru, A.M. 2014. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Journal of Applied Surface Science. 303: 14-22.
Vişa, M. & Duţă, A. 2008. Cadmium and nickel removal from wastewater using modified fly ash: thermodynamic and kinetic study. Science Study and Research. 1: 73-82.
Wang, J.; Teng, X.; Wang, H. & Ban, H. 2004. Characterizing the metal adsorption capability of a class F coal fly ash. Journal of Environmental Science Technology. 38: 6710-6715.
Wang, S.; Soudi, M.; Li, L. & Zhu, Z.H. 2006. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of hazardous Materials. 133(1-3): 243-251.
Wang, S.B.; Boyjoo, Y.; Choueib, A. & Zhu, Z.H. 2005. Removal of dyes from aqueous solution using fly ash and red mud. Water Research. 391: 129-138.
Wang, S.; Terdkiatburana, T. & Tadé, M.O. 2008. Single and co-adsorption of heavy metals and humic acid on fly ash. Separation and Purification of Technology. 58 (3): 353–358.
World Health Organization. 2007. Health risks of heavy metals from long-range trans boundary air pollution. World Health Organization Regional Office Europe.
Xu, L.H.; Namkung, N.K.; Kwon, H.B. & Kim, H.T. 2009. Determination of Fouling Characteristics of Various Coals under Gasification Conditions. Journal of Industrial and Engineering Chemistry. 15: 98-102.
Yang, J.S.; Lee, J.Y.; Park, Y.T.; Baek, K. & Choi, J. 2010. Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from aqueous solutions by natural muscovite. Separation Science Technology. 45 (6): 814–823.
Zhou, J.; Zheng, F.; Li, H.; Wang, J.; Bu, N.; Hu, P.; Jian-ming Gao, J.M.; Qiang Zhena, Q.; Bashir, S. & Liu, J.L. 2020. Optimization of post-treatment variables to produce hierarchical porouszeolites from coal gangue to enhance adsorption performance. Chemical Engineering Journal. 381: 122698.