کاربرد LCM درتحلیل وضع موجود و پیش‌بینی تغییرات پوشش و کاربری اراضی در حوضه آبریز سد لتیان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای آمایش سرزمین، گروه علوم محیط زیست، دانشکده محیط‌زیست و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 استاد گروه مهندسی محیط زیست، دانشکده محیط‌زیست و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران ایران

3 استاد گروه مهندسی طراحی محیط‌زیست، پردیس فنی، دانشگاه تهران، تهران، ایران

4 استادیار گروه مهندسی طراحی محیط‌زیست، پردیس فنی، دانشگاه تهران، تهران، ایران

5 استاد گروه ریاضی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

10.22034/eiap.2024.191703

چکیده

تغییرات سریع در پوشش و کاربری اراضی (LULC) سبب ایجاد اختلال در پویایی محیط‌زیست و تخریب سرزمین می‌گردد. مدل‌سازی تغییرات، بر اساس رویکرد نقشه‌های سری زمانی پوشش و کاربری اراضی، نقش مهمی در مدیریت و برنامه‌ریزی منطقه‌‌ای محیط‌زیستی دارد. هدف اصلی این پژوهش، بررسی روند تغییرات کاربری و پوشش اراضی در حوضه آبریز سد لتیان با استفاده از مدل‌سازی است تا با تحلیل وضعیت کنونی کاربری‌ها در منطقه و پیش‌بینی سناریوهای آتی برای سال‌‌های 2027 و 2037، بتوان از تغییرات ناخواسته جلوگیری کرد. مهم‌ترین فرضیه‌ تحقیق پیش رو این است که، منطقه با کاهش نواحی پوشش گیاهی و افزایش کاربری‌های انسان‌ساخت مواجه خواهد شد. تحلیل مکانی/ زمانی تغییرات پوشش و کاربری اراضی، برای دوره‌ 30 ساله مربوط به سال‌های 2007، 1998، 1987 و 2017 با استفاده از ماهواره‌ی لندست و سنجنده‌های OLI, ETM+,TM انجام شد. طبقات کاربری اراضی در این مطالعات به چهار طبقه‌ نواحی انسان‌ساخت، نواحی دارای پوشش گیاهی، اراضی بدون پوشش و منابع آبی تقسیم شدند. مدل‌سازی و پیش‌بینی، با استفاده از ماژول مدل‌سازی تغییرات اراضی) (LCMبر اساس شبکه‌ عصبی مصنوعی (ANN) و پرسپترون چند لایه (MLP) در نرم افزار ترست (TerrSet) انجام شد. نرخ دقت کلی مدل‌سازی برای سال‌‌های (1987، 1998، 2007 و 2017) به ترتیب برابر با 66/80، 21/83، 32/84 و 12/85 درصد و ضریب کاپا برای همان سال‌ها به ترتیب 8/0، 82/0، 84/0 و 86/0 محاسبه شدند. نتایج آشکارسازی تغییرات دوره‌ اول ( 1998-1987)، دوره‌ دوم (2007-1998) و دوره‌ سوم (2017- 2007) نشان می‌دهد که طی این سه دوره‌ زمانی، مساحت باغ‌ها و پوشش گیاهی و اراضی بدون پوشش، کاهش و وسعت نواحی انسان‌ساخت افزایش داشته است. همچنین، طبق نتایج حاصل از مدل‌سازی و پیش‌بینی تغییرات، این روند طی سال‌های 2027 و 2037 نیز ادامه خواهد داشت. نتایج این تحقیق، می تواند از ادامه‌ روند تخریب پوشش‌گیاهی و خطرات ناشی از گسیختگی سیمای‌سرزمین جلوگیری نموده و کمکی باشد به مدیران و برنامه‌ریزان تا تصمیمات آگاهانه‌تری جهت برنامه‌ریزی منطقه‌ای محیط‌زیستی و حفظ منابع طبیعی ارزشمند منطقه اتخاذ نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the Current and Future Prediction of Land Use /Land Cover Change Using (LCM) in Latian Dam Watershed

نویسندگان [English]

  • Banafsheh Shafie 1
  • Amirhossein Javid 2
  • Homa Irani Behbahani 3
  • Hassan Darabi 4
  • Farhad Hosseinzadeh Lotfi 5
1 Ph.D. in Land Use Planning, Department of Environmental sciences, Faculty of Environment & Natural Resources, (IAU) Science and Research Branch, Tehran, Iran
2 Professor, Department of Environmental Engineering, Faculty of Environment & Natural Resources, (IAU) Science and Research Branch, Tehran, Iran
3 Professor, Department of Environmental Design, Campus of Engineering, University of Tehran, Tehran, Iran
4 Assistant Professor, Department of Environmental Design, Campus of Engineering, University of Tehran, Tehran, Iran
5 Professor, Department of Mathematics, Faculty of Basic Sciences, (IAU) Science and Research Branch, Tehran, Iran
چکیده [English]

Accelerated changes in land use/land cover (LULC) cause changes in environmental dynamics and land degradation. The monitoring and modeling of changes, based on a time-series LULC approach, is fundamental for planning and managing regional environments. The current study analyzed the LULC changes, as well as estimate future scenarios for 2027 and 2037. To achieve accuracy, in predicting LULC changes, the land change modeler (LCM) was used for the Latian Dam Watershed. The LULC time-series technique was specified utilizing four atmospherically-endorsed surface reflectance Landsat images for the years t1 (1987), t2 (1998), t3 (2007) and t4 (2017), to authenticate the LULC predictions to obtain estimates for t5 (2027) and t6 (2037). The LULC classes identified in the watershed were (a) built-areas, (b) vegetated areas, (c) bare lands and (d) water bodies. The dynamic modeling of the LULC was based on a multilayer perceptron (MLP) and artificial neural network (ANN) in LCM. The overal accuracy rate equivalent 80.66, 83.21, 84.32 and 85.12for the years t1 (1987), t2 (1998), t3 (2007) and t4 (2017), and Kappa Index equating to 0.80, 0.82, 0.84 and 0.86 respectively. The results of LULC change analysis showed an increase in the build-up areas; and a decrease in bare lands and vegetated areas within the duration of the study period. The results of this research could help regional planners and managers in the formulation of public policies designed to conserve environmental resources in the Latian Dam Watershed and consequently, minimize the risks of the fragmentation of orchards, vegetated areas and degradation of the valuable resources.

کلیدواژه‌ها [English]

  • Modeling
  • Prediction
  • LULC change؛ LCM
  • Latian dam watershed
Aghaee, M.; Khavarian,H. & Mostafazadeh, R. 2020. Prediction of Land Use Changes Using CA-Markov and LCM Models in the Kozeh-toparaghi Watershed in the Ardabil Province. Watershed Management Researh. 33(3):91-107. (in Persian)
Al-sharif, A. & Pradhan, B. (2013). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS -Arab J Geosci.
Anand, J., Gosain, A.K., & Khosa, R., 2018. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance ofGanga basin to land use change using the SWAT model. Sci. Total Environ. 644, 503-519.
Ansari, A., & Golabi, M.H., (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands: A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research. (7):64-70.
Araya, Y.H. & Cabral, P. (2010). Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra,Portugal. Remote Sens. 2, 1549–1563.
Ayele, G., Hayicho, H., & Alemu, M. (2019). Land Use Land Cover Change Detection and Deforestation Modeling: In Delomena District of Bale Zone, Ethiopia. Journal of Environmental Protection. 10, 532-561.
Azari, M., Tayyebi, A., Helbich, M., & Reveshty, M.A., 2016. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh Iran. GIScience & Remote Sensing. 53 (2), 183-205.
Bai, Y., Ochuodho, T.O., & Yang, J., 2019. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indicat.102, 51-64.
Belal, A., & Moghanm, F. (2011): Detecting urban growth using remote sensing and GIS techniques in Al Gharbiya governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science 14: 73-79.
Chen, J., Gong. P., He, C., Pu, R., & Shi, P. (2003): Land-use/land-cover change detection using improved change-vector analysis. Photogrammetric Engineering & Remote Sensing. 69(4): 369-379.
Clark Labs. TerrSet Software; Clark Labs: Worcester, MA, USA, 2016.
Darabi, H., &Jalali, D. (2018): Illuminating the formal–informal dichotomy in land development on the basis of transaction cost theory. Planning Theory 2019, Vol. 18(1), PP. 100–121.
Eastman, J.R. (2009). Idrisi Tiaga: Guide to GIS and image processing, Clark University.
Eastman, J.R. IDRISI Selva Tutorial. (2014).Available online: http://uhulag.mendelu.cz/files/pagesdata/ eng/gis/idrisi_selva_tutorial.pdf (accessed on 15 December 2014)    
Ebrahimi, E. 2020. Prioritization of Factors Affecting Landslide Occurrences and Preparation of Hazard Map Using a Novel Random Forest Algorithm (Case Study: Latian Dam Watershed). Journal of Natural Geography. 12 (49):125-143. (in Persian)
Eyoh, A., Olayinka, D.N., Nwilo, P., Okwuashi, O.; Isong, M., & Udoudo, D. (2012). Modelling and Predicting Future Urban Expansion of Lagos, Nigeria from Remote Sensing Data Using Logistic Regression and GIS. Int. J. Appl. Sci. Technol. 2, 116–124.
Falahatkar, S., Soffianian, A.R., Khajeddin, S.J., Ziaee, H.R.; & Ahmadi Nadoushan, M. (2011). Integration of Remote Sensing Data and GIS Prediction of Land Cover Maps. International journal of geomatics and geoscience. 1(4): 847-864.
Falahatkar, S. Hosseini, S. M. Salman Mahini, A. & Ayoubi, Sh. (2016). Prediction of Land Use/Cover Change by Using LCM Model. Journal of Environmental Research. 13 (7): 163-174. (in Persian)
Gholamalifard, M.; Joorabian Shooshtari, S.; Hosseini Kahnooj, H. & Mirzaei, M. 2013. Modeling Land Use Changes on the Coastal Areas of Mazandaran Province Using LCM in GIS Environment. Journal of Environmental Studies (JES). 38(4): 109-124. (in Persian)
Guan, D., Li, H., Inohae, T., Su, w., Nagaie, T., & Hokao,K.(2011). Modeling urban land use change by the integration of cellular automaton and Markov Model. Ecology Modeling. 222(20-22):3761-3772.
Hamdy, O., Zhao, S., Salheen, M.A., & Eid, Y. Y. (2017). Analyses the Driving Forces for Urban Growth by Using IDRISI®Selva Models Abouelreesh - Aswan as a Case Study. International Journal of Engineering and Technology. 9(3), 226–232.
Hoyer, R., & Chang, H., 2014. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 53, 402-416.
Islam, K., Rahman, MdF., & Jashimuddin, M., 2018. Modeling land use change using cellular automata and artificial neural network: the case of ChunatiWildlife Sanctuary, Bangladesh. Ecol. Indicat. 88 (3), 439-453.
JAMAB Consulting Engineers. 2006. Comprehensive Plan for the Jajrood and Karaj Watershed. (in Persian)
Jensen, J.R. (1996). Introductory Digital Processing: A Remote Sensing Perspective; Prentice-Hall: Upper Saddle River,NJ, USA.
Keshtkar, H., Voigt, W.2015. A spatiotemporal analysis of landscape change using integrated Markov chain and cellular automata model. Modeling Earth System & Environment. 2(10), 1–13.
Keshtkar, H., & Voigt, W. 2016. Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecological. Information. 32, 145–155.
Lausch,A., & Herzog, F. 2002. Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators. 2, 3–15.
 Lee, Y.; & Chang, H. 2011. The Simulation of Land Use Change by CA-Markov: A Case Study of Tainan City, Taiwan. 19th International Conference on Geoinformatics. 24-26 June. China.
Liu, G., Jin, Q., Li, J., Li, L., He, C., Huang, Y., & Yao, Y., 2017. Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. Catena 158, 286-297.
Mas, J.F., Kolb, M., Paegelow, M. Camacho Olmedo, M.T., & Houet, T. 2014. Inductive pattern – based land use/cover change models: A comparison of four software package. Environmental Modeling & Software. 51(1), 94-111.
Moghadam, H.S., & Helbich, M. 2013. Spatiotemporal urbanization processes in the megacity of Mumbai India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 40, 140–149.
Mozumder, C., Tripathi, N.K., & Losiri, C., 2016. Comparing three transition potential models: a case study of built-up transitions in North-East India. Comput. Environ. Urban Syst. 59 (1), 38-49.
Rawat, J., Biswas, V., & Kumar, M. 2013. Changes in land use/cover using geospatial techniques: a case study of Ramnagar town area, district Nainital, Uttarakhand, India. – The Egyptian Journal of Remote Sensing and Space Science 16: 111-117.
Rawat, J., & Kumar, M. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. – The Egyptian Journal of Remote Sensing and Space Science 18: 77-84.
Rezaei Moghadam, M., Asghari, S. & Feizollahpour, M. 2012. Modeling Flood Flow in the Jajrood River Watershed Using Multivariable Regression. Journal of Geography. 30: 163-176. (in Persian)
Rimal, B. Keshtkar, H. et.al. 2017. Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. International Jurnal of Geo information. 6(9): 288.
Samat, N., Hasni, R., & Eltayeb Elhadry, Y.A. 2011. Modeling Land Use Changes at the Peri-Urban Area Using Geographic Information System and Cellular Automata Model. Journal of Sustainable Development. 4(6): 72-84.
Sang, L.; Zhang, C., Yang, J., Zhu, D., & Yun, W. 2011. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Mathematical and Computer Modeling. 54(3-4): 938-943.
Sinha, S., Sharma, L.K., Nathawat, M.S., 2015. Improved Land-use/Land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. Egypt. J. Remote Sens. Space Sci. 18 (2): 217-233.
Soares-Filho, B., Rodrigues, H., & Follador, M., 2013. A hybrid analytical-heuristic method for calibrating land-use change models. Environ. Model. Softw 43 (1), 80-87.
Subedi, P., Subedi, K., & Thapa, B. (2013). Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences. 6(1): 126-132.
Tajrishi, M.; Abrishamchi, A.; Eisazadeh, S. & Ahmadi, M. 2016. Water Reservoir Status of Latian Dam and Evaluation of Options for Quality Improvement. Collection of Research Articles, Faculty of Civil Engineering, Sharif University of Technology. (in Persian)
Tehran Province Statistical Yearbook. 2019. Statistical Centre of Iran. (in Persian) www.amar.org.ir
Thapa, R.B. 2009. Spatial Process of Urbanization in Kathmandu Valley, Nepal. Ph.D. Thesis, The University of Tsukuba, Tsukuba, Japan.
Upadhyay T.P., Solberg, B., Sankhayan, P.L. 2006. Use of models to analyse land-use changes, forest/ soil degradation and carbon sequestration with special reference to Himalayan region: A review and analysis. Forest Policy and Economics. 9: 349- 371.
USGS (United States Geological Survey) Earth Explorer, Landsat Data Archive. 2017. Available online: https://earthexplorer.usgs.gov/.